Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials...
Goals for Today

- Software security
 - Continue
- Cryptography
 - Introduction
Principles

◆ Check inputs
Principles

- Least privilege
Principles

- Check all return values
Principles

- Securely clear memory (passwords, keys, etc)
Principles

- Failsafe defaults
Principles

 Defense in Depth

 Also
 • Prevent
 • Detect
 • Deter
DNSSEC Root Key Split Among Seven People
The DNSSEC root key has been divided among seven people:

Part of ICANN's security scheme is the Domain Name System Security, a security protocol that ensures Web sites are registered and "signed" (this is the security measure built into the Web that ensures when you go to a URL you arrive at a real site and not an identical pirate site). Most major servers are a part of DNSSEC, as it's known, and during a major international attack, the system might sever connections between important servers to contain the damage.

A minimum of five of the seven keyholders -- one each from Britain, the U.S., Burkina Faso, Trinidad and Tobago, Canada, China, and the Czech Republic -- would have to converge at a U.S. base with their keys to restart the system and connect everything once again.

That's a secret sharing scheme they're using, most likely Shamir's Secret Sharing. We know the names of some of them.

Paul Kane -- who lives in the Bradford-on-Avon area -- has been chosen to look after one of seven keys, which will 'restart the world wide web' in the event of a catastrophic event.

Dan Kaminsky is another.

I don't know how they picked those countries.
Principles

- Reduce size of TCB
- Simplicity
- Modularity
- But: Be careful at interface boundaries
Vulnerability Analysis and Disclosure

What do you do if you’ve found a security problem in a real system?

Say

- A commercial website?
- UW grade database?
- iPhone?
- Boeing 787?
Cryptography and Security

• Art and science of protecting our information.

• Keeping it private, if we want privacy

• Protecting its integrity, if we want to avoid forgeries.

Images from Wikipedia and Barnes and Noble
Some thoughts about cryptography

- Cryptography only one small piece of a larger system
- Must protect entire system
 - Physical security
 - Operating system security
 - Network security
 - Users
 - **Cryptography** (following slides)
- “Security only as strong as the weakest link”
 - Need to secure weak links
 - But not always clear what the weakest link is (different adversaries and resources, different adversarial goals)
 - Crypto failures may not be (immediately) detected
- Cryptography helps after you’ve identified your threat model and goals
RFIDs in car keys make it harder to hotwire a car.

Result: Car jackings increased.

Improved security, increased risk.

Biometric car lock defeated by cutting off owner's finger

POSTED BY CORY DOCTOROW, MARCH 31, 2005 7:53 AM

Andrei sez, "'Malaysia car thieves steal finger.' This is what security visionaries Bruce Schneier and Ross Anderson have been warning about for a long time. Protect your $75,000 Mercedes with biometrics and you risk losing whatever body part is required by the biometric mechanism."

"[H]aving stripped the car, the thieves became frustrated when they wanted to restart it. They found they again could not bypass the immobiliser, which needs the owner's fingerprint to disarm it.

They stripped Mr Kumaran naked and left him by the side of the road - but not before cutting off the end of his index finger with a machete."
Key Entry Pad (4-digit PIN)

- This is the key pad on my office safe.
- Inside my safe is a copy of final exam.
- How long would it take you to break in?

Answer (combinatorics):
- \(10^4\) tries *maximum*.
- \(10^4 / 2\) tries on average.

Answer (unit conversion):
- 3 seconds per try --> 4 hours and 10 minutes on average.
Key Entry Pad (4-digit PIN)

- Now assume the safe automatically calls police after 3 failed attempts.

- What is the probability that you will guess the PIN within 3 tries?

- (Assume no repeat tries.)

Answer (combinatorics):
- $10000 \text{ choose } 3$ possible choices for the 3 guesses
- $1 \times (9999 \text{ choose } 2)$ possible choices contain the correct PIN
- So success probability is $\frac{3}{10000}$
Key Entry Pad (4-digit PIN)

- Could you do better at guessing the PIN?

- Answer (chemical combinatorics):
 - Put different chemical on each key (NaCl, KCl, LiCl, ...)

Image from profmason.com
Key Entry Pad (4-digit PIN)

- Could you do better at guessing the PIN?

- Answer (chemical combinatorics):
 - Put different chemical on each key (NaCl, KCl, LiCl, ...)
 - Observe residual patterns after I access safe

Image from profmason.com

Key Entry Pad (4-digit PIN)

- Could you do better at guessing the PIN?

 - Answer (chemical combinatorics):
 - Put different chemical on each key (NaCl, KCl, LiCl, ...)
 - Observe residual patterns after I access safe

Image from profmason.com

Key Entry Pad (4-digit PIN)

- Could you do better at guessing the PIN?

- Answer (chemical combinatorics):
 - Put different chemical on each key (NaCl, KCl, LiCl, ...)
 - Observe residual patterns after I access safe

Lesson: Consider the complete system, physical security, etc

Lesson: Think outside the box

Image from profmason.com

Thermal Patterns

Images from http://lcamtuf.coredump.cx/tsafe/
Common Communication Security Goals

Privacy of data
Prevent exposure of information

Integrity of data
Prevent modification of information

Alice

(passwd = foobar, transfer $100)

$100,000

Adversary

Bob
Symmetric Setting

Both communicating parties have access to a **shared random string** K, called the **key**.
Asymmetric Setting

Each party creates a public key pk and a secret key sk.
Achieving Privacy (Symmetric)

Encryption schemes: A tool for protecting privacy.

Message M
Ciphertext C

Alice
K

Encrypt
K

Decrypt
K

Bob
K

Adversary
Achieving Privacy (Asymmetric)

Encryption schemes: A tool for protecting privacy.
Achieving Integrity (Symmetric)

Message authentication schemes: A tool for protecting integrity.
(Also called message authentication codes or MACs.)

Message authentication schemes: A tool for protecting integrity.
(Also called message authentication codes or MACs.)
Achieving Integrity (Asymmetric)

Digital signature schemes: A tool for protecting integrity and authenticity.

Alice
pkA, skA
Message M
Tag T

Sign

pkB
M
T
(M, T)

Verify

pkA
valid/invalid

Adversary

Bob
pkB, skB
Where do keys come from?
“Random” Numbers

Pseudorandom Number Generators (PRNGs)
Getting keys: PBKDF

Password-based Key Derivation Functions

Password → PBKDF → K

(Alice)

(Key check value)
Getting keys: CAs

Each party creates a public key pk and a secret key sk.

(Public keys signed by a trusted third party: a certificate authority.)

Adversary

Alice

pk_A, sk_A

$pk_B, \text{sign}(sk_{CA}, B, pk_B)$

Bob

pk_B, sk_B

$pk_A, \text{sign}(sk_{CA}, A, pk_A)$
Getting keys: Key exchange

Key exchange protocols: A tool for establishing a shared symmetric key from public keys

Alice
\[pk_A, sk_A \]

pk_B

K.E.

K.E.

K

Bob
\[pk_B, sk_B \]

Adversary

pk_B, sk_A

pk_A, sk_B

K