
(a) Compute $17^{574} \pmod{2013}$ using the simple algorithm $17*17*17*...*17$ (you may use a computer). Then answer these questions: What is the result? How many multiplication operations are invoked? How many non-trivial modulus operations were invoked (i.e., how many times did you reduce modulo 2013 in your calculations?

(b) Compute $17^{574} \pmod{2013}$ using the squaring method described in lecture. Answer these questions: How many multiplication operations are invoked? How many non-trivial modulus operations? Please show your work (you can use a computer, but show each step of the calculation.

(c) What are the subgroups generated by 3, 10, and 22 in the multiplicative group of integers modulo $p=23$? How many elements are in each subgroup?

Consider the Diffie-Hellman protocol shown in the Lecture 16 slide deck.

What problems, if any, could arise if Alice uses the same x and g^x for all her communications with Bob, and Bob uses the same y and g^y for all his communications with Alice?

3. RSA Improvements (Cryptography Engineering, problem 12.6).

To speed up decryption, Bob has chosen to set his private key $d = 3$ and computes e as the inverse of d modulo phi(n). Is this a good design decision?

4. RSA Key Strength (Cryptography Engineering, problem 12.7).

Does a 256-bit RSA key (a key with a 256-bit modulus, i.e., n) provide strength similar to that of a 256-bit AES key?

5. RSA Implementation (Cryptography Engineering, problem 12.8).

Consider the RSA primitive. Let $p = 71$, $q = 89$, and $e = 3$.

(a) What is n?

(b) What is phi(n)?

(c) The private exponent d is one of these values: 1103, 4107, 5917. Which is it, and how do you know?

(d) Compute the signature on $m_1 = 5416$, $m_2 = 2397$, and $m_3 = m_1m_2 \pmod{n}$ using the basic RSA operation. Show that the third signature is equivalent to the product of the first two signatures. Please show your work. If you use MATLAB, Wolfram|Alpha, Python, or something similar, please show each command you execute and the resulting response.