
 Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2011)

Goals for Today

 Asymmetric Cryptography

X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message))

Encrypt, then sign
• Goal: achieve both confidentiality and authentication
• E.g., encrypted, signed password for access control (for

next slide: assume one password for whole system)
Does this work?

X.509 Version 1 (message is passwd)

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password))

Encrypt, then sign
• Goal: achieve both confidentiality and authentication
• E.g., encrypted, signed password for access control (for

next slide: assume one password for whole system)
Does this work?

Attack on X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password))

 Receiving encrypted password under signature does not
mean that the sender actually knows the password!

Attacker extracts encrypted
password and replays it
under his own signature

“Charlie”, sigCharlie(TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password))

fresh random challenge C

Authentication with Public Keys

Alice Bob

PRIVATE
KEY

PUBLIC
KEY

“I am Alice”

sigAlice(C)

Verify Alice’s signature on c

1. Only Alice can create a valid signature
2. Signature is on a fresh, unpredictable challenge

Potential problem: Alice will sign anything

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

Item 123

Bank

Buy 10
gold coins

Sign ‘X’

Prove your
membership
by signing ‘X’

sigK(x)

PRIVATE
KEY K

sigK(x)

One key recommendation: Don’t use same public key / secret key
pair for multiple applications. (Or make sure messages have different
formats across applications.)

Secure Sessions

Secure sessions are among the most important
applications in network security
• Enable us to talk securely on an insecure network

Goal: secure bi-directional communication channel
between two parties
• The channel must provide confidentiality

– Third party cannot read messages on the channel

• The channel must provide authentication
– Each party must be sure who the other party is

• Other desirable properties: integrity, protection against
denial of service, anonymity against eavesdroppers

Key Establishment Protocols

Common implementation of secure sessions:
• Establish a secret key known only to two parties
• Then use block ciphers for confidentiality, HMAC for

authentication, and so on
Challenge: how to establish a secret key

• Using only public information?
• Even if the two parties share a long-term secret, a fresh

key should be created for each session
– Long-term secrets are valuable; want to use them as sparingly as

possible to limit exposure and the damage if the key is
compromised

– (Background: For N parties, there are N choose 2 = N*(N-1)/2
pairs of parties.)

Key Establishment Techniques

Use a trusted key distribution center (KDC)
• Every party shares a pairwise secret key with KDC
• KDC creates a new random session key and then

distributes it, encrypted under the pairwise keys
– Example: Kerberos

Use public-key cryptography
• Diffie-Hellman authenticated with signatures

– Example: IKE (Internet Key Exchange)

• One party creates a random key, sends it encrypted under
the other party’s public key
– Example: TLS (Transport Layer Security)

Early Version of SSL (Simplified)

Alice Bob

encryptPublicKey(Bob)(“Alice”, KAB)

encryptKAB(“Alice”, sigAlice(NB))

fresh session key

encryptKAB(NB)

fresh random number

 Bob’s reasoning: I must be talking to Alice because…
• Whoever signed NB knows Alice’s private key… Only Alice knows her

private key… Alice must have signed NB… NB is fresh and random
and I sent it encrypted under KAB… Alice could have learned NB only
if she knows KAB… She must be the person who sent me KAB in the
first message...

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC(“Alice”, sigAlice(NB))

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB(NB)
encryptKAC(NB)

encryptKCB(“Alice”, sigAlice(NB))

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Denning-Sacco Protocol

Alice Bob

“I’m Alice”, certAlice, certBob,

encryptPublicKey(Bob)(sigAlice(TimeAlice, KAB),

 (TimeAlice, KAB))

Goal: establish a new shared key KAB with the help
of a trusted certificate service

Certificate server
“Alice”, “Bob”

certAlice, certBob

“I’m Alice”, certAlice, certBob,
encryptPublicKey(Bob)(sigAlice(TimeAlice, KAC),

 (TimeAlice, KAC))

Attack on Denning-Sacco

Alice Bob
(with an evil side)

Alice’s signature is insufficiently explicit
• Does not say to whom and why it was sent

Alice’s signature can be used to impersonate her

Nothing in this
signature says that it

was sent to Bob!

Charlie

“I’m Alice”, certAlice,
certCharlie,

encryptPublicKey(Charlie)(
 sigAlice(TimeAlice, KAC),
 (TimeAlice, KAC))

Private-Key Needham-Schroeder

Alice Bob

KDC
(knows secret keys KAlice and KBob)N1, “I’m Alice, want to talk to Bob”

Creates fresh random
session key KAB

EncryptKAlice(N1,“Bob”,KAB, EncryptKBob(KAB,“Alice”))

ticket

ticket, EncryptKAB(N2)

EncryptKAB(N2-1, N3)

EncryptKAB(N3-1)

Fresh, random
nonce

Another nonce

Yet another nonce

Reflection Attack

Bob

EncryptKAB(N2-1, N3)

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Can’t decrypt, but in ECB mode can extract EncryptKAB(N3)

Open a new session with Bob…

Alice’s ticket, EncryptKAB(N3)

EncryptKAB(N3-1, N4)Extract EncryptKAB(N3-1)

Now successfully authenticate in first session…

EncryptKAB(N3-1)

Alice’s ticket, EncryptKAB(N2)

Replay an old message from Alice

Private-Key Needham-Schroeder

Alice Bob

KDC
(knows secret keys KAlice and KBob)N1, “I’m Alice, wanna talk to Bob”

Creates fresh random
session key KAB

EncryptKAlice(N1,“Bob”,KAB, EncryptKBob(KAB,“Alice”))

ticket

ticket, EncryptKAB(N2)

EncryptKAB(N2-1, N3)

EncryptKAB(N3-1)

Fresh, random
nonce

Another nonce

Yet another nonce

Another issue: If learn KAB after session completes,
then can re-use. (Solution: timestamps, nonces.)

Public-Key Needham-Schroeder

Alice Bob

 EncryptPublicKey(Bob)(“Alice”, NA)

EncryptPublicKey(Alice)(NA, NB)

EncryptPublicKey(Bob)(NB)

Alice’s nonce

Bob’s nonce

Create new key from NA and NB, e.g., NA⊕NB

Alice’s reasoning:
• The only person who could know NA
 is the person who decrypted 1st message
• Only Bob can decrypt message encrypted with
 Bob’s public key
• Therefore, Bob is on the other end of the line
 Bob is authenticated!

Bob’s reasoning:
• The only way to learn NB is
 to decrypt 2nd message
• Only Alice can decrypt 2nd message
• Therefore, Alice is on the other end

Alice is authenticated!

EncryptPublicKey(Bob)(“Alice”, NA)

Evil Bob tricks honest Alice
into revealing Charlie’s
secret Nc (and already knew NA)

Charlie is convinced that he is talking to Alice!

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Evil Bob pretends
that he is Alice

Charlie

EncryptPublicKey(Charlie)

 (“Alice”, NA)

EncryptPublicKey(Alice)(NA, NC)

EncryptPublicKey(Bob)(NC)

Bob can’t decrypt this message,
but he can replay it to Alice

EncryptPublicKey(Alice)(NA, NC)

Lessons of Needham-Schroeder

This is yet another example of design challenges
• Alice is correct that Bob must have decrypted

EncryptPublicKey(Bob)(“Alice”, NA), but this does not mean that
EncryptPublicKey(Alice)(NA, NB) came from Bob

 It is important to realize limitations of protocols
• The attack requires that Alice willingly talk to attacker

– Attacker uses a legitimate conversation with Alice to impersonate
Alice to Charlie

SSL

What is SSL / TLS?

Transport Layer Security (TLS) protocol, version 1.2
• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide

privacy and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers (and mail readers
and ...)

Based on Secure Sockets Layers (SSL) protocol,
version 3.0
• Same protocol design, different algorithms

Deployed in nearly every Web browser

SSL / TLS in the Real World

Application-Level Protection

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

802.11

Protects againt application-level threats
(e.g.,server impersonation), NOT against IP-
level threats (spoofing, SYN flood, DDoS by
data flood)

History of the Protocol
 SSL 1.0

• Internal Netscape design, early 1994?
• Lost in the mists of time

 SSL 2.0
• Published by Netscape, November 1994
• Several weaknesses

 SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

 TLS 1.0
• Internet standard based on SSL 3.0, January 1999
• Not interoperable with SSL 3.0

– TLS uses HMAC instead of earlier MAC; can run on any port

 TLS 1.2
• Remove dependencies to MD5 and SHA1

“Request for Comments”

Network protocols are usually disseminated in the
form of an RFC

TLS version 1.0 is described in RFC 5246
 Intended to be a self-contained definition of the

protocol
• Describes the protocol in sufficient detail for readers who

will be implementing it and those who will be doing
protocol analysis

• Mixture of informal prose and pseudo-code

Evolution of the SSL/TLS RFC

15.00

31.25

47.50

63.75

80.00

SSL 2.0 SSL 3.0 TLS 1.0

Page count

104 pages for TLS 1.2

TLS Basics

TLS consists of two protocols
• Familiar pattern for key exchange protocols

Handshake protocol
• Use public-key cryptography to establish a shared

secret key between the client and the server
Record protocol

• Use the secret key established in the handshake
protocol to protect communication between the client
and the server

We will focus on the handshake protocol

TLS Handshake Protocol

Two parties: client and server
Negotiate version of the protocol and the set of

cryptographic algorithms to be used
• Interoperability between different implementations of the

protocol
Authenticate client and server (optional)

• Use digital certificates to learn each other’s public keys
and verify each other’s identity

Use public keys to establish a shared secret

Handshake Protocol Structure

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S[Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished
switch to negotiated cipher

Finished

switch to negotiated cipher
Record of all sent and
received handshake messages

ClientHello

C

ClientHello

S

Client announces (in plaintext):
• Protocol version
• Supported Cryptographic algorithms

struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites;
 CompressionMethod compression_methods;
} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g., RSA or

Diffie-Hellman)

ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version supported by
 both client and server
• Strongest cryptographic suite selected
 from those offered by the client

ServerKeyExchange

C

Versions, suites, Ns,

ServerKeyExchange

SServer sends public-key certificate
containing either RSA, or
Diffie-Hellman public key
(depending on chosen crypto suite)

C, Versionc, suitec, Nc

ClientKeyExchange

C

Versions, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

“Core” SSL 3.0 Handshake (Not TLS)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc, Nc, Ns

If the protocol is correct, C and S share
some secret key material (secretc) at this point

switch to key derived
from secretc, Nc, Ns

Version Rollback Attack

C

Versions=2.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol without finished

message from client)

Server is fooled into thinking it
is communicating with a client
who supports only SSL 2.0

SSL 2.0 Weaknesses (Fixed in 3.0)

Cipher suite preferences are not authenticated
• “Cipher suite rollback” attack is possible

SSL 2.0 uses padding when computing MAC in
block cipher modes, but padding length field is not
authenticated
• Attacker can delete bytes from the end of messages

MAC hash uses only 40 bits in export mode
No support for certificate chains or non-RSA

algorithms, no handshake while session is open

Protocol Rollback Attacks

Why do people release new versions of security
protocols? Because the old version got broken!

New version must be backward-compatible
• Not everybody upgrades right away

Attacker can fool someone into using the old,
broken version and exploit known vulnerability
• Similar: fool victim into using weak crypto algorithms

Defense is hard: must authenticate version in early
designs

Many protocols had “version rollback” attacks
• SSL, SSH, GSM (cell phones)

Version Check in SSL 3.0 (Approximate)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” eight 3s into left
side of this secret if server
said Versions=2.0

If “embedded” version information includes
eight 3s but server supports version 3, issue
error.

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

2

2

SSL/TLS Record Protection

Use symmetric keys
established in handshake protocol

