CSE 484 (Winter 2011)

Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

Asymmetric Cryptography

Photos?

- Privacy
- **♦** Trust
- Usability
- **** ...

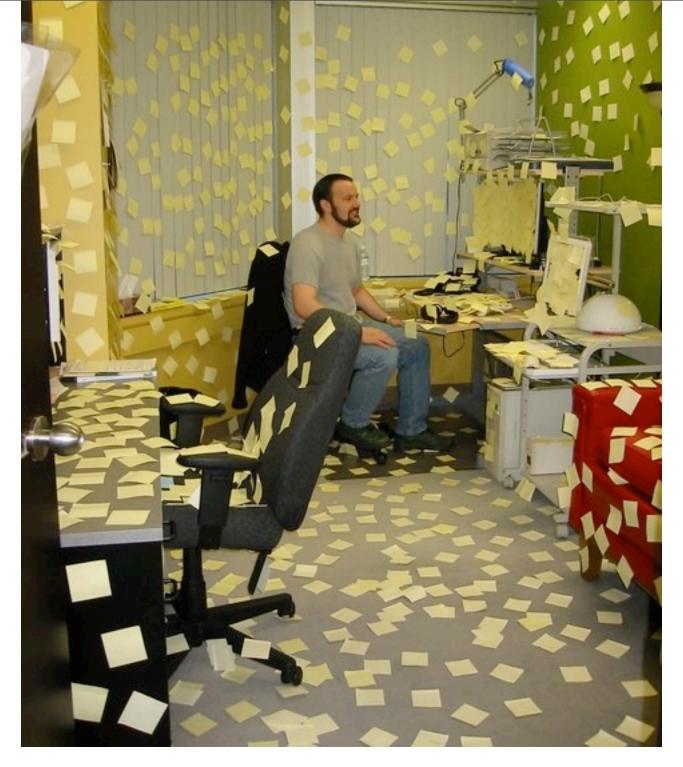
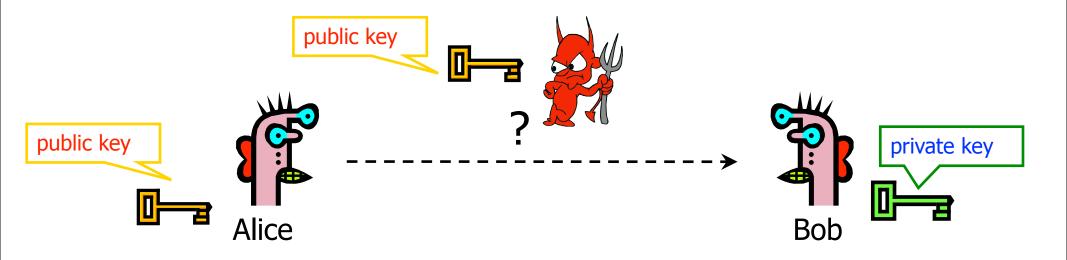


Image from http://www.interactivetools.com/staff/dave/damons_office/

Public Key Cryptography

Basic Problem



Given: Everybody knows Bob's public key
Only Bob knows the corresponding private key

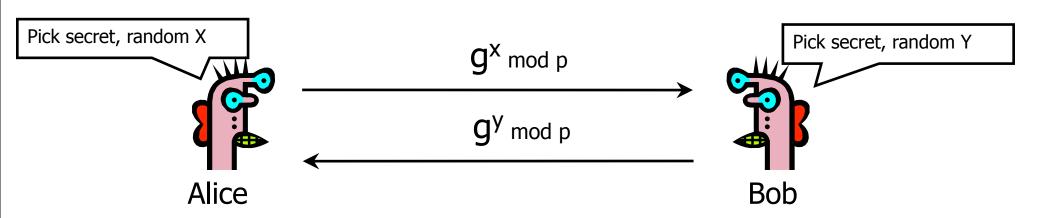
- Goals: 1. Alice wants to send a secret message to Bob
 - 2. Bob wants to authenticate himself

Applications of Public-Key Crypto

- Encryption for confidentiality
 - Anyone can encrypt a message
 - With symmetric crypto, must know secret key to encrypt
 - Only someone who knows private key can decrypt
 - Key management is simpler (or at least different)
 - Secret is stored only at one site: good for open environments
- Digital signatures for authentication
 - Can "sign" a message with your private key
- Session key establishment
 - Exchange messages to create a secret session key
 - Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- Public info: p and g
 - p is a large prime number, g is a generator of Z_p*
 - $-Z_p^*=\{1, 2 \dots p-1\}; \forall a \in Z_p^* \exists i \text{ such that } a=g^i \text{ mod } p$
 - Modular arithmetic: numbers "wrap around" after they reach p



Compute
$$k=(g^y)^x=g^{xy} \mod p$$

Compute
$$k=(g^x)^y=g^{xy} \mod p$$

Why Is Diffie-Hellman Secure?

- ◆ Discrete Logarithm (DL) problem:
 - given g^x mod p, it's hard to extract x
 - There is no known efficient algorithm for doing this
 - This is <u>not</u> enough for Diffie-Hellman to be secure!
- Computational Diffie-Hellman (CDH) problem:
 - given g^x and g^y, it's hard to compute g^{xy} mod p
 - ... unless you know x or y, in which case it's easy
- ◆ Decisional Diffie-Hellman (DDH) problem: given g^x and g^y, it's hard to tell the difference between g^{xy} mod p and g^r mod p where r is random

Properties of Diffie-Hellman

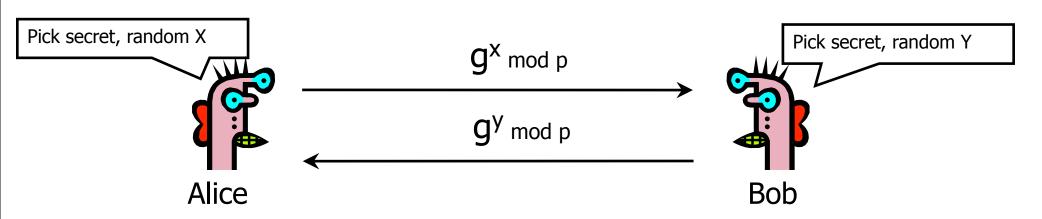
- Assuming DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against passive attackers
 - Eavesdropper can't tell the difference between established key and a random value
 - Can use new key for symmetric cryptography
 - Approx. 1000 times faster than modular exponentiation
- Diffie-Hellman protocol (by itself) does not provide authentication

Properties of Diffie-Hellman

- DDH: not true for integers mod p, but true for other groups
- DL problem in p can be broken down into DL problems for subgroups, if factorization of p-1 is known.
- Common recommendation:
 - Choose p = 2q+1 where q is also a large prime.
 - Pick a g that generates a subgroup of order q in Z_p*
 - DDH is hard for this group
 - (OK to not know all the details of why for this course.)
 - Hash output of DH key exchange to get the key

Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- Public info: p and g
 - p, q are large prime numbers, p=2q+1, g a generator for the subgroup of order q
 - Modular arithmetic: numbers "wrap around" after they reach p



Compute
$$k=H((g^y)^x)=H(g^{xy}) \mod p$$
 Compute $k=H((g^x)^y)=H(g^{xy}) \mod p$

Requirements for Public-Key Encryption

- Key generation: computationally easy to generate a pair (public key PK, private key SK)
 - Computationally infeasible to determine private key SK given only public key PK
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - Even infeasible to learn partial information about M
 - <u>Trapdoor</u> function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

- ◆ Euler totient function φ(n) where n≥1 is the number of integers in the [1,n] interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
- Euler's theorem:

```
if a \in \mathbb{Z}_n^*, then a^{\varphi(n)} = 1 \mod n
```

- Z_n^* : multiplicative group of integers mod n (integers relatively prime to n)
- ◆ Special case: <u>Fermat's Little Theorem</u> if p is prime and gcd(a,p)=1, then a^{p-1}=1 mod p

RSA Cryptosystem

- ◆ Key generation:
 - Generate large primes p, q
 - Say, 1024 bits each (need primality testing, too)
 - Compute n=pq and $\varphi(n)=(p-1)(q-1)$
 - Choose small e, relatively prime to $\varphi(n)$
 - Typically, e=3 or $e=2^{16}+1=65537$ (why?)
 - Compute unique d such that ed = 1 mod $\varphi(n)$
 - Public key = (e,n); private key = (d,n)
- ◆ Encryption of m: c = m^e mod n
 - Modular exponentiation by repeated squaring
- ◆ Decryption of c: $c^d \mod n = (m^e)^d \mod n = m$

Why RSA Decryption Works

- \bullet e·d=1 mod φ (n)
- ◆ Thus e·d=1+k· φ (n)=1+k(p-1)(q-1) for some k
- ◆ Let m be any integer in Z_n
- ◆ If gcd(m,p)=1, then m^{ed}=m mod p
 - By Fermat's Little Theorem, m^{p-1}=1 mod p
 - Raise both sides to the power k(q-1) and multiply by m
 - $m^{1+k(p-1)(q-1)}=m \mod p$, thus $m^{ed}=m \mod p$
 - By the same argument, m^{ed}=m mod q
- ◆ Since p and q are distinct primes and p·q=n, med=m mod n (using the Chinese Remainder Theorem)
- ◆ True for all m in Z_n, not just m in Z_n*

Why Is RSA Secure?

- ◆RSA problem: given n=pq, e such that gcd(e,(p-1)(q-1))=1 and c, find m such that me=c mod n
 - i.e., recover m from ciphertext c and public key (n,e) by taking eth root of c
 - There is no known efficient algorithm for doing this
- ◆ Factoring problem: given positive integer n, find primes p_1 , ..., p_k such that $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$
- If factoring is easy, then RSA problem is easy, but there is no known reduction from factoring to RSA
 - It may be possible to break RSA without factoring n

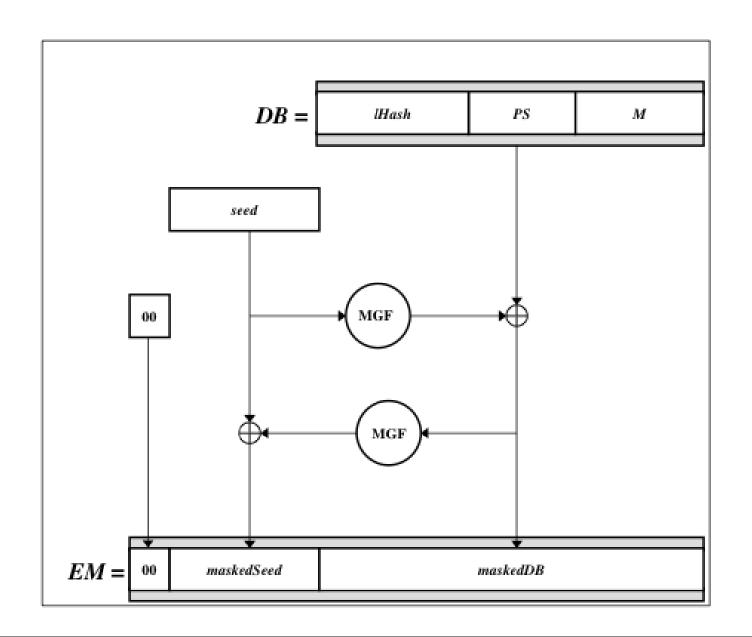
Caveats

- ◆e =3 is a common exponent
 - If $m < n^{1/3}$, then $c = m^3 < n$ and can just take the cube root of c to recover m
 - Even problems if "pad" m in some ways [Hastad]
 - Let c_i = m³ mod n_i same message is encrypted to three people
 - Adversary can compute m³ mod n₁n₂n₃ (using CRT)
 - Then take ordinary cube root to recover m
- Don't use RSA directly for privacy!

Integrity in RSA Encryption

- Plain RSA does <u>not</u> provide integrity
 - Given encryptions of m₁ and m₂, attacker can create encryption of m₁·m₂
 - $-(m_1^e) \cdot (m_2^e) \mod n = (m_1 \cdot m_2)^e \mod n$
 - Attacker can convert m into m^k without decrypting
 - $-(m_1^e)^k \mod n = (m^k)^e \mod n$
- ◆In practice, OAEP is used: instead of encrypting M, encrypt M⊕G(r); r⊕H(M⊕G(r))
 - r is random and fresh, G and H are hash functions
 - Resulting encryption is plaintext-aware: infeasible to compute a valid encryption without knowing plaintext
 - ... if hash functions are "good" and RSA problem is hard

OAEP (image from PKCS #1 v2.1)



On RSA encryption

- Encrypted message needs to be in interpreted as an integer less than n
 - Reason: Otherwise can't decrypt.
 - Message is very often a symmetric encryption key.