
User Authentication

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2011)

Goals for Today

 User authentication

 CELT

 Reminder: HW2, Lab2

Course Evaluation
Jim Borgford-Parnell

• Center for Engineering Learning and Teaching (CELT)
 I’d love your feedback on this course

• Your feedback is valuable! Both positive and negative.
(Helpful for the remainder of this course, when
possible, and future courses.)

• Thanks!

How should we store passwords on a server?
• In cleartext?
• Encrypted?
• Hashed?

UNIX-Style Passwords

 t4h97t4m43
 fa6326b1c2
 N53uhjr438
 Hgg658n53
 …

user

system password file
“cypherpunk”

hash
function

Password Hashing

 Instead of user password, store H(password)
When user enters password, compute its hash and

compare with entry in password file
• System does not store actual passwords!
• System itself can’t easily go from hash to password

– Which would be possible if the passwords were encrypted

Hash function H must have some properties
• One-way: given H(password), hard to find password

– No known algorithm better than trial and error
– The attacker doesn’t need to find the password, just a

password that hashes to the stored value

• “Slow” to compute

(Early) UNIX Password System
Uses DES encryption as if it were a hash function

• Encrypt NULL string using password as the key
– Truncates passwords to 8 characters!

• Artificial slowdown: run DES 25 times
– Why 25 times? Slowdowns like these are important in practice!

• (“Don’t use DES like this at home.”)
• Can instruct modern UNIXes to use cryptographic hash

function

 Problem: passwords are not truly random
• With 52 upper- and lower-case letters, 10 digits and 32

punctuation symbols, there are 948 ≈ 6 quadrillion possible
8-character passwords (around 252)

• Humans like to use dictionary words, human and pet names
≈ 1 million common passwords

Dictionary Attack
Password file /etc/passwd is world-readable

• Contains user IDs and group IDs which are used by many
system programs

Dictionary attack is possible because many
passwords come from a small dictionary
• Attacker can compute H(word) for every word in the

dictionary and see if the result is in the password file
• With 1,000,000-word dictionary and assuming 10 guesses

per second, brute-force online attack takes 50,000
seconds (14 hours) on average
– This is very conservative. Offline attack is much faster!

• As described (H(word)), could just create dictionary of
“word to H(word)” mapping once -- for all users!!

Salt

alice:fURxfg,4hLBX:14510:30:Alice:/u/alice:/bin/csh

/etc/passwd entry
salt
(chosen randomly when
password is first set)

hash(salt,pwd)Password

• Users with the same password have different entries in the
password file

• Online dictionary attack is still possible! (Precomputed
dictionaries possible too -- but significantly more expensive.)

Basically, encrypt NULL plaintext

Advantages of Salting

Without salt, attacker can pre-compute hashes of
all dictionary words once for all password entries
• Same hash function on all UNIX machines
• Identical passwords hash to identical values; one table

of hash values can be used for all password files
With salt, attacker must compute hashes of all

dictionary words once for each password entry
• With 12-bit random salt, same password can hash to 212

different hash values
• Attacker must try all dictionary words for each salt value

in the password file
Pepper: Secret salt (not stored in password file)

Today on Slashdot

Other Password Issues
Keystroke loggers

• Hardware
• Software / Spyware

Shoulder surfing
• It’s happened to me!

Online vs offline attacks
• Online: slower, easier to respond

Multi-site authentication
• Share passwords?

“Improving” Passwords

Add biometrics
• For example, keystroke dynamics or voiceprint
• Revocation is often a problem with biometrics

Graphical passwords
• Goal: increase the size of memorable password space

Password managers
Two-factor authentication

• Leverages user’s phone (or other device) for
authentication

