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Goals for Today

 User authentication

 CELT

 Reminder:  HW2, Lab2



Course Evaluation
Jim Borgford-Parnell

• Center for Engineering Learning and Teaching (CELT)
 I’d love your feedback on this course

• Your feedback is valuable!  Both positive and negative.  
(Helpful for the remainder of this course, when 
possible, and future courses.)

• Thanks!



How should we store passwords on a server?
• In cleartext?
• Encrypted?
• Hashed?

UNIX-Style Passwords

 t4h97t4m43
 fa6326b1c2
 N53uhjr438
 Hgg658n53
 …

user

system password file
“cypherpunk”

hash
function



Password Hashing

 Instead of user password, store H(password)
When user enters password, compute its hash and 

compare with entry in password file
• System does not store actual passwords!
• System itself can’t easily go from hash to password

– Which would be possible if the passwords were encrypted

Hash function H must have some properties
• One-way: given H(password), hard to find password

– No known algorithm better than trial and error
– The attacker doesn’t need to find the password, just a 

password that hashes to the stored value

• “Slow” to compute



(Early) UNIX Password System
Uses DES encryption as if it were a hash function

• Encrypt NULL string using password as the key
– Truncates passwords to 8 characters!

• Artificial slowdown: run DES 25 times
– Why 25 times?  Slowdowns like these are important in practice!

• (“Don’t use DES like this at home.”)
• Can instruct modern UNIXes to use cryptographic hash 

function

 Problem: passwords are not truly random
• With 52 upper- and lower-case letters, 10 digits and 32 

punctuation symbols, there are 948 ≈ 6 quadrillion possible 
8-character passwords (around 252)

• Humans like to use dictionary words, human and pet names 
≈ 1 million common passwords 



Dictionary Attack
Password file /etc/passwd is world-readable

• Contains user IDs and group IDs which are used by many 
system programs

Dictionary attack is possible because many 
passwords come from a small dictionary
• Attacker can compute H(word) for every word in the 

dictionary and see if the result is in the password file
• With 1,000,000-word dictionary and assuming 10 guesses 

per second, brute-force online attack takes 50,000 
seconds (14 hours) on average
– This is very conservative.  Offline attack is much faster!

• As described (H(word)), could just create dictionary of 
“word to H(word)” mapping once -- for all users!!



Salt

alice:fURxfg,4hLBX:14510:30:Alice:/u/alice:/bin/csh

/etc/passwd entry
salt
(chosen randomly when
password is first set)

hash(salt,pwd)Password

• Users with the same password have different entries in the 
password file 

• Online dictionary attack is still possible!  (Precomputed 
dictionaries possible too -- but significantly more expensive.)

Basically, encrypt NULL plaintext



Advantages of Salting

Without salt, attacker can pre-compute hashes of 
all dictionary words once for all password entries
• Same hash function on all UNIX machines
• Identical passwords hash to identical values; one table 

of hash values can be used for all password files
With salt, attacker must compute hashes of all 

dictionary words once for each password entry
• With 12-bit random salt, same password can hash to 212 

different hash values
• Attacker must try all dictionary words for each salt value 

in the password file
Pepper:  Secret salt (not stored in password file)



Today on Slashdot 



Other Password Issues
Keystroke loggers

• Hardware
• Software / Spyware

Shoulder surfing
• It’s happened to me!

Online vs offline attacks
• Online:  slower, easier to respond

Multi-site authentication
• Share passwords?





“Improving” Passwords

Add biometrics
• For example, keystroke dynamics or voiceprint
• Revocation is often a problem with biometrics

Graphical passwords
• Goal: increase the size of memorable password space

Password managers
Two-factor authentication

• Leverages user’s phone (or other device) for 
authentication


