
Symmetric Cryptography
+

Web Security

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2011)

International Criminal Tribunal for
Rwanda
http://www.nytimes.com/2009/01/27/science/

27arch.html?_r=1&ref=science

Credits: Alexei Czeskis, Karl Koscher, Batya Friedman

http://www.nytimes.com/2009/01/27/science/27arch.html?_r=1&ref=science
http://www.nytimes.com/2009/01/27/science/27arch.html?_r=1&ref=science
http://www.nytimes.com/2009/01/27/science/27arch.html?_r=1&ref=science
http://www.nytimes.com/2009/01/27/science/27arch.html?_r=1&ref=science

HMAC

Construct MAC by applying a cryptographic hash
function to message and key

 Invented by Bellare, Canetti, and Krawczyk (1996)
Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

Embedded hash function
(strength of HMAC relies on

strength of this hash function)

“Black box”: can use this HMAC
construction with any hash function
(why is this important?)

Block size of embedded hash function

Secret key padded
to block size

magic value (flips half of key bits)

another magic value
(flips different key bits)

hash(key,hash(key,message))

“Amplify” key material
(get two keys out of one)

Very common problem:
given a small secret, how to
derive a lot of new keys?

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Alice Bob

K K

M/invalid

K K

M
Encrypt Decrypt

C

Key K

.Message M

.Ciphertext C Adversary

Recall: Often desire both privacy and integrity. (For SSH,
SSL, IPsec, etc.)

Some subtleties! Encrypt-and-MAC

valid/invalid

M

DecryptKe VerifyKm

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

TC’

Ciphertext

Return M if
valid

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

But insecure! [BN, Kra]

Assume Alice sends messages:

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

If Ti = Tj then Mi = Mj

	
 Adversary learns whether two plaintexts are equal.

Especially problematic when M1, M2, ... take on only a small
number of possible values.

Results of [BN00,Kra01]

Strong (CTXT)

Strong (CCA) Weak (CPA) InsecurePrivacy

Integrity Weak (PTXT) Weak (PTXT)

MAC-then-EncryptEncrypt-then-MAC Encrypt-and-MAC

M MACKm

TM

EncryptKe

C
Ciphertext C

M

EncryptKe MACKm

TC’
Ciphertext C

EncryptKe

M

MACKmC’

TC’
Ciphertext C

The Secure Shell (SSH) protocol is designed to provide:

• Secure remote logins.

• Secure file transfers.

Where security includes:

• Protecting the privacy of users’ data.

• Protecting the integrity of users’ data.

OpenSSH is included in the default installations of OS X and
many Linux distributions.

C’

paddingpdlpl

1 byte4 bytes

M

T

EncryptKe MACKm

M
Data to be

communicated

ctr

4 bytes

Maintained internally; not
transmitted

EKe,Km

Ciphertext packet

Authenticated encryption in SSH

T1C’1

EncryptKe MACKm

M1ctr1

T2T1

M2M1 FIREFIRE

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2 FIREFIRE

Then the tags T1 and T2 will be different with high probability.

10

But if counters repeat, tags may once
again leak private information about data.

Now: Web Security
(Back to Asymmetric
Cryptography Later)

Browser and Network

Browser

Network
OS

Hardware

websiterequest

reply

Types of problems

Web browser problems (client side)
• Exploit vulnerabilities in browsers
• Install botnets, keyloggers
• Exfiltrate data

Web application code (server side)
• Exploit vulnerabilities in code running on servers (and

coming from servers)
• Examples: XSS, XSRF, SQL injection, insecure

parameters, security misconfigurations
• Steal user credentials, data from databases, ...

Example Questions

How does website know who you are?
How do you know who the website is?
Can someone intercept traffic ?
Related: How can you better control flow of

information?

Our focus: High-level principles (lab focuses on
pragmatics)

Focus on a bit of history: How we got here

HTTP: HyperText Transfer Protocol

Used to request and return data
• Methods: GET, POST, HEAD, …

Stateless request/response protocol
• Each request is independent of previous requests
• Statelessness has a significant impact on design and

implementation of applications
Evolution

• HTTP 1.0: simple
• HTTP 1.1: more complex
• ... Still evolving ...

GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

HTTP Request

Method File HTTP version Headers

Data – none for GET
Blank line

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

Primitive Browser Session

www.e_buy.com

www.e_buy.com/
shopping.cfm?

pID=269

View catalog

www.e_buy.com/
shopping.cfm?

pID=269&
item1=102030405

www.e_buy.com/
checkout.cfm?

pID=269&
item1=102030405

Check outSelect item

Store session information in URL; easily read on network

FatBrain.com circa 1999 [due to Fu et al.]

User logs into website with his password,
authenticator is generated, user is given special URL
containing the authenticator

• With special URL, user doesn’t need to re-authenticate
– Reasoning: user could not have not known the special URL

without authenticating first. That’s true, BUT…

Authenticators are global sequence numbers
• It’s easy to guess sequence number for another user

• Partial fix: use random authenticators

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752

Bad Idea: Encoding State in URL

Unstable, frequently changing URLs
Vulnerable to eavesdropping
There is no guarantee that URL is private

• Early versions of Opera used to send entire browsing
history, including all visited URLs, to Google

Cookies

Storing Info Across Sessions

A cookie is a data blob created by an Internet site
to store information on your computer

Browser
Server

Enters form data

Stores cookie

Browser
Server

Send cookies later

HTTP is traditionally a stateless protocol; cookies add state

Includes domain (who can read it), expiration,
“secure” (can be read only over SSL)

What Are Cookies Used For?

Authentication
• Use the fact that the user authenticated correctly in

the past to make future authentication quicker
Personalization

• Recognize the user from a previous visit
Tracking

• Follow the user from site to site; learn his/her
browsing behavior, preferences, and so on

Cookie Management

Cookie ownership
• Once a cookie is saved on your computer, only the

website that created the cookie can read it
(supposedly)

Variations
• Temporary cookies

– Stored until you quit your browser

• Persistent cookies
– Remain until deleted or expire

• Third-party cookies
– Set by sites embedded within other sites (e.g., ads)

Privacy Issues with Cookies

Cookie may include any information about you
known by the website that created it
• Browsing activity, account information, etc.

Sites can share this information
• Advertising networks
• 2o7.net tracking cookie

Browser attacks could invade your privacy
 November 8, 2001 (and many more sense):
 Users of Microsoft's browser and e-mail programs could be

vulnerable to having their browser cookies stolen or
modified due to a new security bug in Internet Explorer
(IE), the company warned today

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

Change this to 2.00

Shopping Cart Form Tampering

 Many Web-based shopping cart applications use hidden fields in HTML
forms to hold parameters for items in an online store. These
parameters can include the item's name, weight, quantity, product ID,
and price. Any application that bases price on a hidden field in an
HTML form is vulnerable to price changing by a remote user. A remote
user can change the price of a particular item they intend to buy, by
changing the value for the hidden HTML tag that specifies the price, to
purchase products at any price they choose.

 Platforms Affected:
• 3D3.COM Pty Ltd: ShopFactory 5.8 and earlier @Retail Corporation: @Retail Any version

• Adgrafix: Check It Out Any version Baron Consulting Group: WebSite Tool Any version

• ComCity Corporation: SalesCart Any version Crested Butte Software: EasyCart Any version

• Dansie.net: Dansie Shopping Cart Any version Intelligent Vending Systems: Intellivend Any version

• Make-a-Store: Make-a-Store OrderPage Any version McMurtrey/Whitaker & Associates: Cart32 2.6

• McMurtrey/Whitaker & Associates: Cart32 3.0 pknutsen@nethut.no: CartMan 1.04

• Rich Media Technologies: JustAddCommerce 5.0 SmartCart: SmartCart Any version

• Web Express: Shoptron 1.2

http://xforce.iss.net/xforce/xfdb/4621

Storing State in Browser Cookies

Set-cookie: price=299.99
User edits the cookie… cookie: price=29.99
What’s the solution?
Add a MAC to every cookie, computed with the

server’s secret key
• Price=299.99; MAC(ServerKey, 299.99)

 Is this the solution?

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="F13A3....B2">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with
leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Storing State in Browser

Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

MAC(K, “$20”)

A319F...3C

MAC(K, “$2”)

Better: MAC(K, “$20,Black leather purse, product number 12345, ...”)

Web Authentication via Cookies

Need authentication system that works over HTTP
and does not require servers to store session data

Servers can use cookies to store state on client
• When session starts, server computes an authenticator

and gives it back to browser in the form of a cookie
– Authenticator is a value that client cannot forge on his own
– Example: MAC(server’s secret key, session id)

• With each request, browser presents the cookie
• Server recomputes and verifies the authenticator

– Server does not need to remember the authenticator

Typical Session with Cookies

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator
(e.g., recompute
hash(key,sessId))

Authenticators must be unforgeable and tamper-proof
(malicious client shouldn’t be able to compute his own or modify an existing authenticator)

WSJ.com circa 1999 [due to Fu et al.]

 Idea: use user,hash(user||key) as authenticator
• Key is secret and known only to the server. Without the

key, clients can’t forge authenticators.
• || is string concatenation

 Implementation: user,crypt(user||key)
• crypt() is UNIX hash function for passwords
• crypt() truncates its input at 8 characters
• Usernames matching first 8 characters end up with the

same authenticator
• No expiration or revocation

 It gets worse… This scheme can be exploited to
extract the server’s secret key

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk
008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…
AliceBoA 0073UYEre5rBQ Try logging in: access refused

AliceBoB 00bkHcfOXBKno Access refused
AliceBoC 00ofSJV6An1QE Login successful! 1st key symbol is C

Now a 6-letter user name…
AliceBCA

AliceBCB

001mBnBErXRuc

00T3JLLfuspdo

Access refused

Access refused… and so on

• Only need 128 x 8 queries instead of intended 1288

• Minutes with a simple Perl script vs. billions of years

Better Cookie Authenticator

Capability Expiration MAC(server secret, capability, expiration)

Describes what user is authorized to
do on the site that issued the cookie

Cannot be forged by malicious user;
does not leak server secret

Main lesson: be careful rolling your own
• Homebrewed authentication schemes are easy to get

wrong
There are standard cookie-based schemes

Online banking, shopping, government, etc.
Website takes input from user, interacts with back-

end databases and third parties, outputs results by
generating an HTML page

Often written from scratch in a mixture of PHP, Java,
Perl, Python, C, ASP, ...

Security is a potential concern.
• Poorly written scripts with inadequate input validation
• Sensitive data stored in world-readable files

Web Applications

