CSE 484 (Winter 2011)

Introduction to Cryptography (Continued)

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

Under the hood: Symmetric cryptography (Continued)

Announcements / Reminders

- Lab 1 due on Wednesday (5pm)
 - Extra TA office hours tomorrow
- HW 2 now online (Due Feb 11)
 - Forgot to add extra credit (2DES problems) -- will add ASAP
- Lab 2 to be announced on Wednesday (discussed in quiz section on Thursday)

Achieving Integrity (Symmetric)

Message authentication schemes: A tool for protecting integrity.

(Also called message authentication codes or MACs.)

CBC Mode: Encryption

Identical blocks of plaintext encrypted differently

- Last cipherblock depends on entire plaintext
 - Still does not guarantee integrity

CBC-MAC

- Not secure when system may MAC messages of different lengths.
 - Encode length at beginning: Whiteboard example
 - Use a derivative called CMAC
- Internal collisions and birthday attacks: Whiteboard example

Hash Functions: Main Idea

H is a lossy compression function

- Collisions: h(x)=h(x') for distinct inputs x, x'
- Result of hashing should "look random" (make this precise later)
 - Intuition: half of digest bits are "1"; any bit in digest is "1" half the time

Cryptographic hash function needs a few properties...

One-Way

Intuition: hash should be hard to invert

- "Preimage resistance"
- Let $h(x')=y \in \{0,1\}^n$ for a random x'
- Given y, it should be hard to find any x such that h(x)
 =y
- How hard?
 - Brute-force: try every possible x, see if h(x)=y
 - SHA-1 (common hash function) has 160-bit output
 - Expect to try 2^{159} inputs before finding one that hashes to y.

Collision Resistance

Should be hard to find distinct x, x' such that h(x)=h(x')

- Brute-force collision search is only O(2^{n/2}), not O(2ⁿ)
- For SHA-1, this means O(2⁸⁰) vs. O(2¹⁶⁰)
- Birthday paradox (informal)
 - Let t be the number of values x,x',x"... we need to look at before finding the first pair x,x' s.t. h(x)=h(x')
 - What is probability of collision for each pair $x_{,x}$? $1/2^{n}$
 - How many pairs would we need to look at before finding the first collision?
 O(2ⁿ)
 - How many pairs x,x' total? Choose(t,2)=t(t-1)/2 ~ $O(t^2)$
 - What is t? 2^{n/2}

One-Way vs. Collision Resistance

One-wayness does <u>not</u> imply collision resistance

- Suppose g is one-way
- Define h(x) as g(x') where x' is x except the last bit
 - h is one-way (to invert h, must invert g)
 - Collisions for h are easy to find: for any x, h(x0)=h(x1)

Collision resistance does <u>not</u> imply one-wayness

- Suppose g is collision-resistant
- Define h(x) to be 0x if x is n-bit long, 1g(x) otherwise
 - Collisions for h are hard to find: if y starts with 0, then there are no collisions, if y starts with 1, then must find collisions in g
 - h is not one way: half of all y's (those whose first bit is 0) are easy to invert (how?); random y is invertible with probab. 1/2

Weak Collision Resistance

- Given randomly chosen x, hard to find x' such that h(x)=h(x')
 - Attacker must find collision for a <u>specific</u> x. By contrast, to break collision resistance it is enough to find <u>any</u> collision.
 - Brute-force attack requires O(2ⁿ) time
 - AKA second-preimage collision resistance
- Weak collision resistance does <u>not</u> imply collision resistance

Which Property Do We Need?

- UNIX passwords stored as hash(password)
 - One-wayness: hard to recover the/a valid password
- Integrity of software distribution
 - Weak collision resistance (second-preimage resistance)
 - But software images are not really random...
- Auction bidding
 - Alice wants to bid B, sends H(B), later reveals B
 - One-wayness: rival bidders should not recover B (this may mean that she needs to hash some randomness with B too)
 - Collision resistance: Alice should not be able to change her mind to bid B' such that H(B)=H(B')

Common Hash Functions

MD5

- 128-bit output
- Designed by Ron Rivest, used very widely
- Collision-resistance broken (summer of 2004)

RIPEMD-160

• 160-bit variant of MD5

SHA-1 (Secure Hash Algorithm)

- 160-bit output
- US government (NIST) standard as of 1993-95
- Also recently broken! (Theoretically -- not practical.)
- SHA-256, SHA-512, SHA-224, SHA-384
- SHA-3: Forthcoming.

Basic Structure of SHA-1 (Not Required)

How Strong Is SHA-1?

Every bit of output depends on every bit of input

- Very important property for collision-resistance
- Brute-force inversion requires 2¹⁶⁰ ops, birthday attack on collision resistance requires 2⁸⁰ ops
- Some recent weaknesses (2005)
 - Collisions can be found in 2⁶³ ops

International Criminal Tribunal for Rwanda (Example Application)

http://www.nytimes.com/2009/01/27/science/ 27arch.html?_r=1&ref=science

Adama Dieng CB44-8847-D68D-8CD2-C2F5 22FE-177B-2C30-3549-C211

Angeline Djampou EA39-EC39-A5D0-314D-04A6 5258-572C-9268-8CB7-6404

Avi Singh CD69-2CB5-78CB-D8D7-7D81 F9B2-9CEA-5B79-DA4F-3806

Alfred Kwende C690-FC5A-8EB7-0B83-B99D 2593-608A-F421-BEE4-16B2

Sir Dennis Byron CA46-BE7A-B8F6-095A-C706 1C60-31E7-F9EA-AF96-E2CE

Everard O'Donnell 909F-86AB-C1B8-57A7-9CF6 5BCD-7F5E-F4F6-68CA-70D1

Credits: Alexei Czeskis, Karl Koscher, Batya Friedman