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Introduction to Cryptography
(Continued)
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Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...




Goals for Today

¢ Under the hood: Symmetric cryptography
(Continued)
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® Feistel structure

e “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

o After 3 random rounds, ciphertext indistinguishable from
a random permutation if internal F function is a

pseudorandom function (Luby & Rackoff) (this is a
theoretical result -- don't need to know it)

¢ DES: Data Encryption Standard
e Feistel structure
e Invented by IBM, issued as federal standard in 1977
e 64-bit blocks, 56-bit key + 8 bits for parity




DES and 56 bit keys (stallings Tab 2.2)

® 56 bit keys are quite short

Number of Alternative Time required at 10°
Key Size (bits) Keys Time required at 1 encryption/us encryptions/us
32 232 =43 x 109 2°! us = 35.8 minutes 2.15 milliseconds
56 236 =72 x 1016 233 us = 1142 years 10.01 hours
128 2128 =3 4 % 1038 2137 ys = 5.4 » 10 years 5.4 x 1018 years
168 2168 =37 » 1030 2167 yus = 5.9 % 1036 years 5.9 » 1070 years
iﬂm? 26! = 4 x 102 2 x 1026 ys = 6.4 x 101 years 6.4 x 105 years

€ 1999: EFF DES Crack + distibuted machines
e < 24 hours to find DES key
e Now companies specialize in this

€ DES ---> 3DES
e 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)



Advanced Encryption Standard (AES)

® New federal standard as of 2001
¢ Based on the algorithm
¢ 128-bit blocks, keys can be 128, 192 or 256 bits

® Unlike DES, does not use Feistel structure
e The entire block is processed during each round

¢ Design uses some very nice mathematics
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1010007 128-bit plaintext 128-bit key

LIDIOIE] (arranged as 4x4 array of 8-bit bytes)
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byte substitution

shift array rows
(1st unchanged, 2™ left by 1, 3 left by 2, 4t left by 3)

Shift rows

Expand key

I mix 4 bytes in each column
IX columns (each new byte depends on all bytes in old column)

é_)& add key for this round

repeat 10 tlmes




Encryptlng a Large Message

OSo we've got a good block C|pher but our plalntext
is larger than 128-bit block size

@ Electronic Code Book (ECB) mode

e Split plaintext into blocks, encrypt each
one separately using the block cipher

@ Cipher Block Chaining (CBC) mode

o Split plaintext into blocks, XOR each block with the result
of encrypting previous blocks

¢ Counter (CTR) mode

e Use block cipher to generate keystream, like a stream
cipher

—

®...
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¢ Identical blocks of plaintext produce identical

blocks of ciphertext

® No integrity checks: can mix and match blocks




u
[ I
NS 38 B SRS NS S R S AT NS RN S AT R L ENE R S AN R L S NS S R S A AN

plaintext

Initialization l‘
vector —)@
(random) v vK

block
cipher

\4

i
Iphertext|

® Identical blocks of plaintext encrypted differently

¢ Last cipherblock depends on entire plaintext
e Still does not guarantee integrity
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ECB vs. CBC
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AES in ECB mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

AES in CBC mode




Information Leakage in ECB Mode
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CBC and Electronic Voting
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Found in the source code for Diebold voting machines:

DesCBCEncrypt((des c block*)tmp, (des c block*)record.m Data,
totalSize, DESKEY, NULL, DES ENCRYPT)




CTR Mode: Encryption
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® Identical blocks of plaintext encrypted differently
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nertext

® Still does not guarantee integrity

® Fragile if ctr repeats




CTR Mode: Decryption

Initial ctr —> ctr ctr+2
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When Is an Encryption Scheme
“Secure”?

¢ Hard to recover the key?
e What if attacker can learn plaintext without learning the
key?
¢ Hard to recover plaintext from ciphertext?
e What if attacker learns some bits or some function of
bits?
@ Fixed mapping from plaintexts to ciphertexts?

e What if attacker sees two identical ciphertexts and infers
that the corresponding plaintexts are identical?

e Implication: encryption must be randomized or stateful




How Can a Cipher Be Attacked?

 Assume that the attacker knows the encryption
algorithm and wants to learn information about
some ciphertext

® Main question: what else does attacker know?
e Depends on the application in which cipher is used!

@ Ciphertext-only attack

¢ Known-plaintext attack (stronger)
e Knows some plaintext-ciphertext pairs

® Chosen-plaintext attack (even stronger)
e Can obtain ciphertext for any plaintext of his choice

¢ Chosen-ciphertext attack (very strong)
e Can decrypt any ciphertext except the target
e Sometimes very realistic model




Deflnlng Securlty (Not Reqwred)

OAttacker does the

® He chooses as many plaintexts as he wants, and
learns the corresponding ciphertexts

¢ When ready, he picks two plaintexts M, and M,

e He is even allowed to pick plaintexts for which he
previously learned ciphertexts!

¢ He receives either a ciphertext of M,, or a ciphertext
of M,

® He wins if he guesses correctly which one it is




Defining Security (Not Required)

® Idea: attacker should not be able to learn

even a single bit of the encrypted plaintext
¢ Define Enc(M,,M,,b) to be a function that returns
encrypted M, “oort
e Given two plaintexts, Enc returns a ciphertext of one or
the other depending on the value of bit b

e Think of Enc as a magic box that computes ciphertexts
on attacker’s demand. He can obtain a ciphertext of any
plaintext M by submitting M;=M;=M, or he can try to
learn even more by submitting M,#M;.

¢ Attacker’s goal is to learn just one bit b




Chosen-Plaintext Security (Not
Required)

¢ Consider two experiments (A is the attacker)
Experiment 0 Experiment 1

A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)
and outputs bit d and outputs bit d

o Identical except for the value of the secret bit

e d is attacker’s guess of the secret bit [ A knows" secret bi, he

should be able to make his

® Attacker’s advantage is defined as | outeutdependon i

=
| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Expl)) |

® Encryption scheme is chosen-plaintext secure if this
advantage is negligible for any efficient A




“Slmple Example (Not Reqwred)

® Any deterministic, stateless symmetric encryption
scheme is insecure

o Attacker can easily distinguish encryptions of different
plaintexts from encryptions of identical plaintexts

e This includes ECB mode of common block ciphers!
Attacker A interacts with Enc(-,-,b)

Let X,Y be any two different plaintexts
C; < Enc(X,Y,b); C, < Enc(Y,Y,b);
If C;=C, then b=1 else say b=0

® The advantage of this attacker A is 1
Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1




Why Hlde Everythlng?

OLeakmg even a Ilttle b|t of mformatlon about the
plaintext can be disastrous

@ Electronic voting
e 2 candidates on the ballot (1 bit to encode the vote)

e If ciphertext leaks the parity bit of the encrypted
plaintext, eavesdropper learns the entire vote

® Also, want a strong definition, that implies others




Birthday attacks

¢ Are there two people in the first 1/3 of this
classroom that have the same birthday?

e Yes?
e NO?




Birthday attacks

¢ Why is this important for cryptography?
e 365 days in a year (366 some years)

— Pick one person. To find another person with same birthday
would take on the order of 365/2 = 182.5 people
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— Expect “collision” -- two people with same birthday -- with a

room of only 23 people

— For simplicity, approximate when we expect a collision as the
square root of 365.

o 2128 different 128-bit keys

— Pick one key at random. To exhaustively search for this key
requires trying on average 2147 keys.

— Expect a “collision” after selecting approximately 2% random
keys.

— 64 bits of security against collision attacks, not 128 bits.




Achieving Privacy (Symmetric)

Encryption schemes: A tool for protecting privacy.

Message
Ciphertext Adversary




Achieving Integrity (Symmetric)
Message authentication schemes: A tool for
protecting integrity.

(Also called message authentication codes or MACs.)

valid/

S Verify ™2

T

K

T}l (M,T)

Adversary




CBC Mode: Encryption
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® Identical blocks of plaintext encrypted differently

¢ Last cipherblock depends on entire plaintext
e Still does not guarantee integrity




CBC-MAC
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plaintext

¢ Not secure when system may MAC messages of different
lengths.

e Encode length at beginning: Whiteboard example
e Use a derivative called CMAC

¢ Internal collisions and birthday attacks: Whiteboard example




