Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
Goals for Today

- Asymmetric Cryptography
Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- **Public info:** p and g
 - p is a large prime number, g is a generator of \mathbb{Z}_p^*
 - $\mathbb{Z}_p^* = \{1, 2 \ldots p-1\}; \forall a \in \mathbb{Z}_p^* \exists i$ such that $a = g^i \mod p$
 - **Modular arithmetic:** numbers “wrap around” after they reach p

Alice

1. Pick secret, random X

Bob

1. Pick secret, random Y

1. $g^x \mod p$

2. $g^y \mod p$

Compute $k = (g^y)^x = g^{xy} \mod p$

Compute $k = (g^x)^y = g^{xy} \mod p$
Why Is Diffie-Hellman Secure?

- **Discrete Logarithm (DL) problem:**
 given \(g^x \mod p \), it’s hard to extract \(x \)
 - There is no known **efficient** algorithm for doing this
 - This is **not** enough for Diffie-Hellman to be secure!

- **Computational Diffie-Hellman (CDH) problem:**
 given \(g^x \) and \(g^y \), it’s hard to compute \(g^{xy} \mod p \)
 - … unless you know \(x \) or \(y \), in which case it’s easy

- **Decisional Diffie-Hellman (DDH) problem:**
 given \(g^x \) and \(g^y \), it’s hard to tell the difference between \(g^{xy} \mod p \) and \(g^r \mod p \) where \(r \) is random
Properties of Diffie-Hellman

- Assuming DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against passive attackers
 - Eavesdropper can't tell the difference between established key and a random value
 - Can use new key for symmetric cryptography
 - Approx. 1000 times faster than modular exponentiation
- Diffie-Hellman protocol (by itself) does not provide authentication
Properties of Diffie-Hellman

- DDH: not true for integers mod p, but true for other groups
- DL problem in p can be broken down into DL problems for subgroups, if factorization of p-1 is known.
- Common recommendation:
 - Choose p = 2q+1 where q is also a large prime.
 - Pick a g that generates a subgroup of order q in \mathbb{Z}_p^*
 - (OK to not know all the details of why for this course.)
 - Hash output of DH key exchange to get the key
Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- **Public info:** \(p \) and \(g \)
 - \(p, q \) are large prime numbers, \(p=2q+1 \), \(g \) a generator for the subgroup of order \(q \)
 - **Modular arithmetic:** numbers “wrap around” after they reach \(p \)

```
Pick secret, random \( X \)  
\[ g^x \mod p \]  
\[ g^y \mod p \]  
Alice  
Bob  
Pick secret, random \( Y \)  
Compute \( k = H((g^y)^x) = H(g^{xy}) \mod p \)  
Compute \( k = H((g^x)^y) = H(g^{xy}) \mod p \)
```
Requirements for Public-Key Encryption

- **Key generation**: computationally easy to generate a pair (public key PK, private key SK)
 - Computationally infeasible to determine private key SK given only public key PK
- **Encryption**: given plaintext M and public key PK, easy to compute ciphertext $C = E_{PK}(M)$
- **Decryption**: given ciphertext $C = E_{PK}(M)$ and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - Even infeasible to learn partial information about M
 - **Trapdoor function**: Decrypt(SK,Encrypt(PK,M))=M
Some Number Theory Facts

- Euler totient function $\varphi(n)$ where $n \geq 1$ is the number of integers in the $[1,n]$ interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
- Euler’s theorem:
 if $a \in \mathbb{Z}_n^*$, then $a^{\varphi(n)} = 1 \mod n$
- Special case: Fermat’s Little Theorem
 if p is prime and $\gcd(a,p)=1$, then $a^{p-1} = 1 \mod p$
RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

Key generation:
- Generate large primes p, q
 - Say, 1024 bits each (need primality testing, too)
- Compute n=pq and ϕ(n)=(p-1)(q-1)
- Choose small e, relatively prime to ϕ(n)
 - Typically, e=3 or e=2^{16}+1=65537 (why?)
- Compute unique d such that ed = 1 mod ϕ(n)
- Public key = (e,n); private key = (d,n)

Encryption of m: \(c = m^e \mod n \)
- Modular exponentiation by repeated squaring

Decryption of c: \(c^d \mod n = (m^e)^d \mod n = m \)
Why RSA Decryption Works

- $e \cdot d = 1 \mod \varphi(n)$
- Thus $e \cdot d = 1 + k \cdot \varphi(n) = 1 + k(p-1)(q-1)$ for some k

Let m be any integer in \mathbb{Z}_n

- If $\gcd(m, p) = 1$, then $m^{ed} = m \mod p$
 - By Fermat’s Little Theorem, $m^{p-1} = 1 \mod p$
 - Raise both sides to the power $k(q-1)$ and multiply by m
 - $m^{1+k(p-1)(q-1)} = m \mod p$, thus $m^{ed} = m \mod p$
 - By the same argument, $m^{ed} = m \mod q$
- Since p and q are distinct primes and $p \cdot q = n$, $m^{ed} = m \mod n$
Why Is RSA Secure?

◆ RSA problem: given \(n = pq \), \(e \) such that \(\gcd(e,(p-1)(q-1))=1 \) and \(c \), find \(m \) such that \(m^e = c \mod n \)
 - i.e., recover \(m \) from ciphertext \(c \) and public key \((n,e)\) by taking \(e^{th} \) root of \(c \)
 - There is no known efficient algorithm for doing this

◆ Factoring problem: given positive integer \(n \), find primes \(p_1, \ldots, p_k \) such that \(n = p_1^{e_1}p_2^{e_2}\ldots p_k^{e_k} \)

◆ If factoring is easy, then RSA problem is easy, but there is no known reduction from factoring to RSA
 - It may be possible to break RSA without factoring \(n \)
Caveats

- $e = 3$ is a common exponent
 - If $m < n^{1/3}$, then $c = m^3 < n$ and can just take the cube root of c to recover m
 - Even problems if “pad” m in some ways [Hastad]
 - Let $c_i = m^3 \mod n_i$ - same message is encrypted to three people
 - Adversary can compute $m^3 \mod n_1n_2n_3$ (using CRT)
 - Then take ordinary cube root to recover m

- Don’t use RSA directly for privacy!
Integrity in RSA Encryption

- Plain RSA does **not** provide integrity
 - Given encryptions of m_1 and m_2, attacker can create encryption of $m_1 \cdot m_2$
 $-(m_1^e) \cdot (m_2^e) \mod n = (m_1 \cdot m_2)^e \mod n$
 - Attacker can convert m into m^k without decrypting
 $-(m_1^e)^k \mod n = (m^k)^e \mod n$

- In practice, OAEP is used: instead of encrypting M, encrypt $M \oplus G(r) \oplus H(M \oplus G(r))$
 - r is random and fresh, G and H are hash functions
 - Resulting encryption is **plaintext-aware**: infeasible to compute a valid encryption without knowing plaintext
 - ... if hash functions are “good” and RSA problem is hard
OAEP (image from PKCS #1 v2.1)