Why Phishing Works
Rachna Dhamija, J.D. Tygar, Marti Hearst
Presented By: Vince Zanella
Motivation

• To shield users from fraudulent websites, website designers must know which attack strategies work and why
• Hypotheses exist, but no empirical evidence
• Quick numbers: Top phishing sites have tricked upwards of 5% of their recipients into providing them with sensitive information
• Classic Question: What makes a website credible?
This Paper: What Makes a FRAUDULANT Website Credible?

- Very interesting space to explore for user-interface designers
- Both phishers and anti-phishers are doing battle in this same space
- But wait, there are already several security measures built into the browser to defeat phishers!
The Empirical Study: A Usability Test

- 22 Participants were showed 20 different websites
- Good phishing sites: 90% fooled
- Existing anti-fishing cues: ineffective
- Average rate of mistakes: 40%
- Popups warning of fraudulent certificates: ineffective
- Participants vulnerable across all backgrounds
Exploit Strategies

• Lack of Knowledge
 ▫ Lack of computer system knowledge
 ▫ Lack of security indicator knowledge

• Visual Deception
 ▫ Visually deceptive text
 ▫ Images masking underlying text
 ▫ Images mimicking windows
 ▫ Windows masking underlying windows
 ▫ Deceptive look and feel

• Bounded Attention
 ▫ Lack of attention to security indicators
 ▫ Lack of attention to absence of security indicators
The Test: Details

- Users were presented with financial and e-commerce websites; some were real, some were spoofs
- Participants task was to identify legitimate and fraudulent websites and give reasoning
- Participants were primed to look for tipoffs
- Note: Study did not look at email lures; instead focused on website security
More Details

- 200 real phishing sites surveyed – a sample of 9 chosen that were representative of the different attack vectors; 3 additional spoof sites created; 7 legitimate sites chosen
- Participants each saw all websites, but in randomized order
- Used Mozilla Firefox 1.0.1 running on Mac OS X
- 20th website in the group was the same for all participants -> required users to accept a self-signed SSL certificate
Demographics

- 45% Male
- Age: 18 – 56, Mean: 29.9, StdDev: 10.8
- Half university staff, half university students
- 14% in technical field
- Primary Browser: 50% IE, 32% FF, 9% Mozilla Unknown, 5% Safari
- Computer Usage Hours per Week: 10 – 135, Mean: 37.8, StdDev: 28.5
Results

- Score: raw number of correctly identified sites: 6 – 18, Mean: 11.6, StdDev: 3.2
- No statistical correlation with a single demographic
Strategies Employed

- **Type I (23%)**: Used only content of a webpage to authenticate
 - Confirmed they never looked at the address bar, and didn’t actually know what its purpose was
 - Scored the worst (6,7,7,9,9)
- **Type II (36%)**: Used content and domain name only
 - Still did not look for any SSL indicators, but were aware of address bar changing
 - Distinguished IP addresses from domain names in address bar
- **Type III (9%)**: Used content and address bar, plus https
 - Still didn’t look for other SSL indicators, like the padlock
 - Some incorrectly identified site icons (favicons) as security features that cannot be duplicated
- **Type IV (23%)**: All of the above, plus the padlock
 - Still, some users gave high credence to a padlock within a page’s content
- **Type V (9%)**: Everything above, plus certificates
 - Occasionally check certificates when presented with a warning
The Toughest Phishing Site to Detect

- Spoof of Bank of the West’s site
- Hosted at www.bankofthewvest.com, instead of the legitimate www.bankofthewest.com
- Everything else copied nearly identically
- Users were very trusting because it didn’t ask for much personal info, linked to anti-phishing how-to, linked to the real BOW’s Verisign certificate popup, linked to the real BOW’s Chinese language version of the page
- Essentially, nobody thought a spoof site would go to this level of detail
- Fooled the participant with the highest level of security expertise
- Only two participants correctly identified it, one noticing the double “v”, the other noticing a stale date
Results Compared to Hypotheses

- Lack of computer system knowledge led to vulnerability
- Experienced users tripped up with visual deception
- New: Lack of knowledge of web fraud
- New: Erroneous security knowledge
Conclusions

• Even in best scenario, with users expecting spoofs to be present, good fishing site can subvert 90% of users
• Trustworthiness indicators misunderstood and misused
• A new approach for website security is needed – cryptography cannot be the sole security measure
• Really need to think of new ways to help novices more easily identify fraudulent sites, both through improved measures and better training
Questions/Concerns?

• Mine: Why not a larger sample size?
• Yours...???