The Problem...

- We “can” protect confidentiality/integrity of transmitted data:
 - Encryption
 - Authentication
- But can we protect message meta-data?
 - Sender/Recipient
 - Timing
- Routing meta-data allows for “traffic analysis”
Why Traffic Analysis Matters

- Sender and recipient information reveals a lot:
 - Political and religious views
 - National origin
 - Professional affiliations
 - Consumer behavior
 - ...and many other things.
Motivating Privacy

- So what? Why should we care?
 - “Only bad people doing bad things need Tor”

- Wrong!
 - Privacy is a fundamental human right
 - Common test: “let me see your wallet”
 - Better yet: “let me see your unencrypted laptop”
TOR: Onion Routing v2.0

- Tor (The Onion Router) is an open-source low-latency anonymizing overlay network implementation.
- Designed to fix many shortcomings of early onion routers.
- *Not* intended to overcome:
 - centralized design
 - vulnerability to end-to-end attacks
 - protocol-specific identifiers (e.g. cookies, machine info)
 - visibility of messages/senders (i.e. not steganographic)
Flaws in “old” onion routing

- Adversaries could record traffic, compromising downstream nodes and forcing decryption of old messages
- Each TCP stream required it’s own circuit
- Each application protocol required an application proxy
- Meta-data about network state was spread throughout
- Message integrity was never checked post-circuit
- No robust or secure way to connect to anonymous servers
- Implementations often did not run in user space
Tor’s solutions

- “Perfect” forward security achieved
- TCP streams can share a circuit
- Use of SOCKS as a standard proxy interface
- “Centralized” knowledge of directory servers (trusted)
- End-to-end integrity checking
- “Hidden services”: users can connect to anonymous services via agreed-upon rendezvous points
- Tor can be installed without kernel patches
Onion Routing, TOR style

- Retrieve Tor nodes from directory node
- Build a “circuit” of Tor relays
- Send message, tunneling through circuit
- Final Tor “exit” node sends original message to B (unencrypted).
Open problems (at the time)

- Denial-of-service
 - Rate limits and congestion control in place
 - Doesn’t prevent forced cryptographic computation
- Exit abuse
- End-to-end analysis
- Scaling
- Incentive to contribute
- Performance
Give Tor a try...

- Free download for Windows and Mac OS X
- You may also want:
 - Firefox
 - Torbutton (turns on/off FF’s use of Tor)