Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
CurtMonash writes

"Much is being made of the deliberations as to whether President Obama will be able to keep using his beloved "BarackBerry." As the NYTimes details, there are two major sets of objections: infosecurity and legal/records retention. Deven Coldewey of CrunchGear does a good job of showing that the technological infosecurity problems can be solved. And as I've noted elsewhere, the 'Omgod, he left his Blackberry behind at dinner' issue is absurd.

Presidents are surrounded by attendants, Secret Service and otherwise. Somebody just has to be given the job of looking after the device. As for the legal objections, writing that will likely be read by the Supreme Court surely depends on the same authorities as anything else, wouldn't it? Anything he'd write to his Secretary of Defense? That's not a public record."

CWMike writes

"A new Government Accountability Office report (PDF) finds that taxpayer and other sensitive data continues to remain dangerously underprotected at the IRS. The news comes less than three months after the Treasury Inspector General for Tax Administration reported that there were major security vulnerabilities in two crucial IRS systems. Two big standouts in the latest finding: The IRS still does not always enforce strong password management rules for identifying and authenticating users of its systems, nor does it encrypt certain types of sensitive data, the GAO said."
Attack Scenarios for Encryption

- Ciphertext-Only
- Known Plaintext
- Chosen Plaintext
- Chosen Ciphertext (and Chosen Plaintext)
Attack Scenarios for Integrity

What do you think these scenarios should be?
Birthday attacks

Are there two people in the first 1/3 of this classroom that have the same birthday?

- Yes?
- No?
- Experiment
Birthday attacks

Why is this important for cryptography?

- 365 days in a year (366 some years)
 - Pick one person. To find another person with same birthday would take on the order of $365/2 = 182.5$ people
 - Expect “collision” -- two people with same birthday -- with a room of only 23 people

- 2^{128} different 128-bit keys
 - Pick one key at random. To exhaustively search for this key requires trying on average 2^{127} keys.
 - Expect a “collision” after selecting approximately 2^{64} random keys.
 - 64 bits of security against collision attacks, not 128 bits.
Goals for Today

- Web security
- Key issues
 - Browser is the new OS
 - State on client
 - Integrity (e.g., for pricing)
 - Privacy (e.g., cookies)
 - Website isolation (e.g., cross-site scripting)
Browser and Network

[Diagram showing the flow of a website request and reply through a browser and network]

Browser

OS

Hardware

request

reply

Network

website
Microsoft Issues New IE Browser Security Patch

By Richard Karpinski

- Microsoft has released a security patch that closes some major holes in its Internet Explorer browser
- The so-called "cumulative patch" fixes six different IE problems
- Affected browsers include Internet Explorer 5.01, 5.5 and 6.0
- Microsoft rated the potential security breaches as "critical"
Fixed by the February 2002 Patch

- Buffer overrun associated with an HTML directive
 - Could be used by hackers to run malicious code on a user's system
- Scripting vulnerability
 - Lets an attacker read files on a user's system
- Vulnerability related to the display of file names
 - Hackers could misrepresent the name of a file and trick a user into downloading an unsafe file
- ... and many more

On April 13, 2004, MS announced 20 new vulnerabilities
A remote code execution vulnerability exists in the Vector Markup Language (VML) implementation in Microsoft Windows. An attacker could exploit the vulnerability by constructing a specially crafted Web page or HTML e-mail that could potentially allow remote code execution if a user visited the Web page or viewed the message. An attacker who successfully exploited this vulnerability could take complete control of an affected system.

Maximum Severity Rating: Critical

Recommendation: Customers should apply the update immediately

Browsers are becoming “mini operating systems” - complex, running third-party code, etc.
HTTP: HyperText Transfer Protocol

- Used to request and return data
 - Methods: GET, POST, HEAD, ...

- Stateless request/response protocol
 - Each request is independent of previous requests
 - Statelessness has a significant impact on design and implementation of applications

- Evolution
 - HTTP 1.0: simple
 - HTTP 1.1: more complex
 - ... Still evolving ...
HTTP Request

<table>
<thead>
<tr>
<th>Method</th>
<th>File</th>
<th>HTTP version</th>
<th>Headers</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td>/default.asp</td>
<td>HTTP/1.0</td>
<td></td>
</tr>
</tbody>
</table>

- **Accept**: image/gif, image/x-bitmap, image/jpeg, /*/*
- **Accept-Language**: en
- **User-Agent**: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
- **Connection**: Keep-Alive
- **If-Modified-Since**: Sunday, 17-Apr-96 04:32:58 GMT

- Data – none for GET
 - Blank line
HTTP Response

HTTP version Status code Reason phrase Headers Data

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>
Primitive Browser Session

- View catalog: www.e_buy.com
- Select item: www.e_buy.com/shopping.cfm?pID=269
- Check out: www.e_buy.com/checkout.cfm?pID=269&item1=102030405

Store session information in URL; easily read on network
FatBrain.com circa 1999 [due to Fu et al.]

- User logs into website with his password, authenticator is generated, user is given special URL containing the authenticator

 https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

 - With special URL, user doesn’t need to re-authenticate
 - Reasoning: user could not have not known the special URL without authenticating first. That’s true, BUT...

- Authenticators are global sequence numbers
 - It’s easy to guess sequence number for another user

 https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752

 - Partial fix: use random authenticators
 - (Why not complete fix?)
Bad Idea: Encoding State in URL

- Unstable, frequently changing URLs
- Vulnerable to eavesdropping
- There is no guarantee that URL is private
 - Early versions of Opera used to send entire browsing history, including all visited URLs, to Google
Cookies
Storing Info Across Sessions

- A **cookie** is a file created by an Internet site to store information on your computer.

![Diagram]

HTTP is a stateless protocol; cookies add state.
What Are Cookies Used For?

- **Authentication**
 - Use the fact that the user authenticated correctly in the past to make future authentication quicker

- **Personalization**
 - Recognize the user from a previous visit

- **Tracking**
 - Follow the user from site to site; learn his/her browsing behavior, preferences, and so on
Cookie Management

◆ Cookie ownership
 - Once a cookie is saved on your computer, only the website that created the cookie can read it (supposedly)

◆ Variations
 - Temporary cookies
 - Stored until you quit your browser
 - Persistent cookies
 - Remain until deleted or expire
 - Third-party cookies
 - Originates on or sent to another website
Privacy Issues with Cookies

- Cookie may include any information about you known by the website that created it
 - Browsing activity, account information, etc.
- Sites can share this information
 - Advertising networks
 - 2o7.net tracking cookie
- Browser attacks could invade your privacy

November 8, 2001:
Users of Microsoft's browser and e-mail programs could be vulnerable to having their browser cookies stolen or modified due to a new security bug in Internet Explorer (IE), the company warned today
The website "twci.coremetrics.com" has requested to save a file on your computer called a "cookie." This file may be used to track usage information...
The website “insightexpressai.com” has requested to save a file on your computer called a “cookie”...
Let’s Take a Closer Look…
Storing State in Browser

❖ Dansie Shopping Cart (2006)
 • “A premium, comprehensive, Perl shopping cart. Increase your web sales by making it easier for your web store customers to order.”

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">
 Black Leather purse with leather straps
Price: $20.00
 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse with leather straps">
 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">
</FORM>
Many Web-based shopping cart applications use hidden fields in HTML forms to hold parameters for items in an online store. These parameters can include the item's name, weight, quantity, product ID, and price. Any application that bases price on a hidden field in an HTML form is vulnerable to price changing by a remote user. A remote user can change the price of a particular item they intend to buy, by changing the value for the hidden HTML tag that specifies the price, to purchase products at any price they choose.

Platforms Affected:

- 3D.COM Pty Ltd: ShopFactory 5.8 and earlier
- @Retail Corporation: @Retail Any version
- Adgrafix: Check It Out Any version
- Baron Consulting Group: WebSite Tool Any version
- ComCity Corporation: SalesCart Any version
- Crested Butte Software: EasyCart Any version
- Dansie.net: Dansie Shopping Cart Any version
- Intelligent Vending Systems: Intellivend Any version
- Make-a-Store: Make-a-Store OrderPage Any version
- McMurtrey/Whitaker & Associates: Cart32 2.6
- McMurtrey/Whitaker & Associates: Cart32 3.0
- pknutsen@nethut.no: CartMan 1.04
- Rich Media Technologies: JustAddCommerce 5.0
- SmartCart: SmartCart Any version
- Web Express: Shoptron 1.2

http://xforce.iss.net/xforce/xfdb/4621
Storing State in Browser Cookies

- Set-cookie: price=299.99
- User edits the cookie... cookie: price=29.99
- What’s the solution?
- Add a MAC to every cookie, computed with the server’s secret key
 - Price=299.99; MAC(ServerKey, 299.99)
- Is this the solution?
Storing State in Browser

- Dansie Shopping Cart (2006)
 - “A premium, comprehensive, Perl shopping cart. Increase your web sales by making it easier for your web store customers to order.”

```html
<form method=POST action="http://www.dansie.net/cgi-bin/scripts/cart.pl">
  Black Leather purse with leather straps<br>Price: $20.00<br>
  <input type=hidden name=name value="Black leather purse">
  <input type=hidden name=price value="F13A3...B2">
  <input type=hidden name=sh value="1">
  <input type=hidden name=img value="purse.jpg">
  <input type=hidden name=custom1 value="Black leather purse with leather straps">
  <input type=submit name="add" value="Put in Shopping Cart">
</form>

Better: MAC(K, “$20”)  MAC(K, “$2”)

Better: MAC(K, “$20,Black leather purse, product number 12345, ...”)
Web Authentication via Cookies

- Need authentication system that works over HTTP and does not require servers to store session data
  - Why is it a bad idea to store session state on server?

- Servers can use cookies to store state on client
  - When session starts, server computes an authenticator and gives it back to browser in the form of a cookie
    - Authenticator is a value that client cannot forge on his own
      - Example: MAC(server’s secret key, session id)
  - With each request, browser presents the cookie
  - Server recomputes and verifies the authenticator
    - Server does not need to remember the authenticator
Typical Session with Cookies

Authenticators must be **unforgeable and tamper-proof**

(malicious client shouldn’t be able to compute his own or modify an existing authenticator)
Idea: use user, hash(user||key) as authenticator
   • Key is secret and known only to the server. Without the key, clients can’t forge authenticators.
   • || is string concatenation

Implementation: user, crypt(user||key)
   • crypt() is UNIX hash function for passwords
   • crypt() truncates its input at 8 characters
   • Usernames matching first 8 characters end up with the same authenticator
   • No expiration or revocation

It gets worse... This scheme can be exploited to extract the server’s secret key
Better Cookie Authenticator

- Capability
  - Describes what user is authorized to do on the site that issued the cookie

- Expiration
  - MAC(server secret, capability, expiration)
    - Cannot be forged by malicious user; does not leak server secret

- Main lesson: don’t roll your own!
  - Homebrewed authentication schemes are often flawed

- There are standard cookie-based schemes