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Goals for Today

 User Authentication
• Conventional Passwords
• Graphical Passwords
• Biometrics
• More

Basic Problem

?

How do you prove to someone that 
       you are who you claim to be?

Any system with access control must solve this problem

Many Ways to Prove Who You Are
What you know

• Passwords
• Secret key

Where you are
• IP address
• Physical location

What you are
• Biometrics

What you have
• Secure tokens

All have advantages and disadvantages



Why Authenticate?

To prevent an attacker from breaking into our 
account
• Co-worker, family member, ...

To prevent an attacker from breaking into any 
account on our system
• Unix system

– Break into single account, then exploit local vulnerability or 
mount a “stepping stones” attack

• Calling cards
• Building

To prevent an attacker from breaking into any 
account on any system

Also Need

Usability!
• Remember password?
• Have to bring physical object with us all the time?

Denial of service
• Stolen wallet
• Try to authenticate as you until your account becomes 

locked
• What about a military or other mission critical scenario

– Lock all accounts - system unusable

Password-Based Authentication

User has a secret password.  
   System checks it to authenticate the user.

• May be vulnerable to eavesdropping when password is 
communicated from user to system

How is the password stored?
How does the system check the password?
How easy is it to remember the password?
How easy is it to guess the password?

• Easy-to-remember passwords tend to be easy to guess
• Password file is difficult to keep secret

Common usage modes

Amazon = t0p53cr37

UWNetID = f0084r#1

Bank = a2z@m0$;
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Common usage modes

Write down passwords
Share passwords with others
Use a single password across multiple sites

• Amazon.com and Bank of America?
• UW CSE machines and MySpace?

Use easy to remember passwords
• Favorite <something>?
• Name + <number>?

Other “authentication” questions
• Mother’s maiden name?

Some anecdotes [Dhamija and Perrig]

Users taught how to make secure passwords, but 
chose not to do so

Reasons:
• Awkward or difficult
• No accountability
• Did not feel that it was important

Social Engineering

“Hi, I’m the CEO’s assistant.  I need you to reset 
his password right away.  He’s stuck in an airport 
and can’t log in!  He lost the paper that he wrote 
the password on.

“What do you mean you can’t do it!?  Do you 
really want me to tell him that you’re preventing 
him from closing this major deal?

“Great!  That’s really helpful.  You have no idea 
how important this is.  Please set the password to 
ABCDEFG.  He’ll reset it again himself right away.

“Thanks!”



University of Sydney Study [Greening ‘96]

336 CS students emailed message asking them to 
supply their password
• Pretext:  in order to “validate” the password database 

after a suspected break-in

138 students returned their password
30 returned invalid password
200 changed their password
(Not disjoint)

Still, 138 is a lot!

Awkward

How many times do you have to enter your 
password before it actually works?
• Sometimes quite a few for me!  (Unless I type extra 

slowly.)

 Interrupts normal activity
• Do you lock your computer when you leave for 5 

minutes?
• Do you have to enter a password when your computer 

first boots?  (Sometimes it’s an option.)
And memorability is an issue!

Memorability [Anderson]

Hard to remember many PINs and passwords
One bank had this idea

• If pin is 2256, write your favorite 4-letter word in this 
grid

• Then put random letters everywhere else

Memorability [Anderson]

Problem!
Normally 10000 choices for the PIN --- hard to 

guess on the first try
Now, only a few dozen possible English words --- 

easy to guess on first try!



How should we store passwords on a server?
• In cleartext?
• Encrypted?
• Hashed?

UNIX-Style Passwords

 t4h97t4m43
 fa6326b1c2
 N53uhjr438
 Hgg658n53
 …

user

system password file
“cypherpunk”

hash
function

Password Hashing

 Instead of user password, store H(password)
When user enters password, compute its hash and 

compare with entry in password file
• System does not store actual passwords!
• System itself can’t easily go from hash to password

– Which would be possible if the passwords were encrypted

Hash function H must have some properties
• One-way: given H(password), hard to find password

– No known algorithm better than trial and error
– It should even be hard to find any pair p1,p2 s.t. H(p1)=H(p2)

UNIX Password System
Uses DES encryption as if it were a hash function

• Encrypt NULL string using password as the key
– Truncates passwords to 8 characters!

• Artificial slowdown: run DES 25 times
– Why 25 times?  Slowdowns like these are important in practice!

• (“Don’t use DES like this at home.”)
• Can instruct modern UNIXes to use MD5 hash function

Problem: passwords are not truly random
• With 52 upper- and lower-case letters, 10 digits and 32 

punctuation symbols, there are 948 ≈ 6 quadrillion 
possible 8-character passwords (around 252)

• Humans like to use dictionary words, human and pet 
names ≈ 1 million common passwords 

Dictionary Attack
Password file /etc/passwd is world-readable

• Contains user IDs and group IDs which are used by many 
system programs

Dictionary attack is possible because many 
passwords come from a small dictionary
• Attacker can compute H(word) for every word in the 

dictionary and see if the result is in the password file
• With 1,000,000-word dictionary and assuming 10 guesses 

per second, brute-force online attack takes 50,000 
seconds (14 hours) on average
– This is very conservative.  Offline attack is much faster!
– As described, could just create dictionary of word-->H(word) 

once!!



Salt

alice:fURxfg,4hLBX:14510:30:Alice:/u/alice:/bin/csh

/etc/passwd entry
salt
(chosen randomly when
password is first set)

hash(salt,pwd)Password

• Users with the same password have different entries 
in the password file 

• Dictionary attack is still possible!

Basically, encrypt NULL plaintext

Advantages of Salting

Without salt, attacker can pre-compute hashes of 
all dictionary words once for all password entries
• Same hash function on all UNIX machines
• Identical passwords hash to identical values; one table 

of hash values can be used for all password files
With salt, attacker must compute hashes of all 

dictionary words once for each password entry
• With 12-bit random salt, same password can hash to 212 

different hash values
• Attacker must try all dictionary words for each salt value 

in the password file

Pepper:  Secret salt (not stored in password file)

Other Password Issues
Keystroke loggers

• Hardware
• Software / Spyware

Shoulder surfing
• It’s happened to me!

Online vs offline attacks
• Online:  slower, easier to respond

Multi-site authentication
• Share passwords?


