CSE 484 (Winter 2008)

Applied Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials .

Goals for Today

Asymmetric Cryptography

CELT: Center for Engineering Learning and
Teaching

Reminder: Midterm on Friday. (Closed book.)

« Contents up through the material for Monday (through
symmetric crypto)

* Not as hard as last year’s midterm.

« Make sure you understand the core concepts so far in
this course:

Requirements for Public-Key Crypto

Key generation: computationally easy to generate a
pair (public key PK, private key SK)

« Computationally infeasible to determine private key SK
given only public key PK

® Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=Ey (M)

Decryption: given ciphertext C=E(M) and private
key SK, easy to compute plaintext M
« Infeasible to compute M from C without SK

« Even infeasible to learn partial information about M
« Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts (“Skip”)

Euler totient function ¢(n) where n=1 is the number

of integers in the [1,n] interval that are relatively
prime to n

« Two numbers are relatively prime if their greatest
common divisor (gcd) is 1

#Euler’s theorem:

if a€Z,*, then a¥™M=1 mod n

Special case: Fermat’s Little Theorem

if p is prime and gcd(a,p)=1, then aP'=1 mod p

RSA Cryptosystem (*“Fast”) e, s asenen 1577

@ Key generation:
« Generate large primes p, q
— Say, 1024 bits each (need primality testing, too)
« Compute n=pq and ¢(n)=(p-1)(g-1)
« Choose small e, relatively prime to ¢(n)
— Typically, e=3 or e=216+1=65537 (why?)
« Compute unique d such that ed = 1 mod ¢(n)
o Public key = (e,n); private key = d
@ Encryption of m: ¢ = meé mod n
* Modular exponentiation by repeated squaring
@ Decryption of c: cdmodn = (me)dmodn=m

Why RSA Decryption Works (“Fast”)

#e-d=1 mod ¢(n)
@ Thus e-d=1+k-g(n)=1+k(p-1)(g-1) for some k

#Let m be any integer in Zn

#1f gcd(m,p)=1, then med=m mod p
« By Fermat’s Little Theorem, mP-1=1 mod p
« Raise both sides to the power k(g-1) and multiply by m
o mi*ke-D@=m mod p, thus med=m mod p
« By the same argument, med=m mod q

#Since p and q are distinct primes and p-q=n,
med=m mod n

Why Is RSA Secure? (“Fast”)

@ RSA problem: given n=pq, e such that
ged(e,(p-1)(g-1))=1 and c, find m such that
me=c mod n
« i.e., recover m from ciphertext c and public key (n,e) by

taking et root of ¢
 There is no known efficient algorithm for doing this

#® Factoring problem: given positive integer n, find
primes py, ..., P, such that n=p,®1p,e2...p,

@ If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA
« It may be possible to break RSA without factoring n

Caveats (“Fast;” Note first bullet)

#Don't use RSA directly
#e =3 is a common exponent
« If m < n'/3, then ¢ = m3 < n and can just take the cube
root of ¢ to recover m
— Even problems if “pad” m in some ways [Hastad]
e Let ¢ = m® mod ni - same message is encrypted to
three people
— Adversary can compute m? mod ninznz (using CRT)
— Then take ordinary cube root to recover m

Integrity in RSA Encryption

Plain RSA does not provide integrity
« Given encryptions of m; and m,, attacker can create
encryption of m;'m,
—(m,©) - (m,?) mod n = (m,;m;)® mod n
o Attacker can convert m into mk without decrypting
—(m®)*mod n = (m*)e mod n
#In practice, OAEP is used: instead of encrypting M,
encrypt M@G(r) ; réH(M®G(r))
o r is random and fresh, G and H are hash functions
* Resulting encryption is plaintext-aware: infeasible to
compute a valid encryption without knowing plaintext
— ... if hash functions are “good” and RSA problem is hard

OAEP (image from PKCS #1 v2.1)

masked0h

i

Alice Bob

Given: Everybody knows Bob's public key
Only Bob knows the corresponding private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

RSA Signatures

Public key is (n,e), private key is d
#To sign message m: s = md mod n
« Signing and decryption are the same operation in RSA
« It's infeasible to compute s on m if you don‘t know d
#To verify signature s on message m:
semod n=(mdemodn=m
 Just like encryption

« Anyone who knows n and e (public key) can verify
signatures produced with d (private key)

#In practice, also need padding & hashing (why?)

Encryption and Signatures

@ Books often say: Encryption and decryption are
inverses, so use decryption as signatures
#That's a common view
 True for the RSA primitive
But not the cryptographic view
 To really use RSA, we need padding

« Some encryption schemes don‘t have natural signature
analogs and vice versa.

Advantages of Public-Key Crypto

Confidentiality without shared secrets
« Very useful in open environments
« No “chicken-and-egg” key establishment problem
— With symmetric crypto, two parties must share a secret before
they can exchange secret messages
— Caveats to come
Authentication without shared secrets
 Use digital signatures to prove the origin of messages
Reduce protection of information to protection of
authenticity of public keys
* No need to keep public keys secret, but must be sure that
Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
« Modular exponentiation is an expensive computation
» Typical usage: use public-key cryptography to establish a
shared secret, then switch to symmetric crypto
— We'll see this in IPSec and SSL
#Keys are longer
* 1024 bits (RSA) rather than 128 bits (AES)
#Relies on unproven number-theoretic assumptions
» What if factoring is easy?
— Factoring is believed to be neither P, nor NP-complete
« (Of course, symmetric crypto also rests on unproven
assumptions)

