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Goals for Today

 Asymmetric Cryptography
 CELT: Center for Engineering Learning and 

Teaching
 Reminder:  Midterm on Friday.  (Closed book.)

• Contents up through the material for Monday (through 
symmetric crypto)

• Not as hard as last year’s midterm.
• Make sure you understand the core concepts so far in 

this course:

Requirements for Public-Key Crypto

Key generation: computationally easy to generate a 
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK 

given only public key PK

Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts (“Skip”)

Euler totient function ϕ(n) where n≥1 is the number 
of integers in the [1,n] interval that are relatively 
prime to n
• Two numbers are relatively prime if their greatest 

common divisor (gcd) is 1

Euler’s theorem: 
   if a∈Zn*, then aϕ(n)=1 mod n

Special case: Fermat’s Little Theorem
   if p is prime and gcd(a,p)=1, then ap-1=1 mod p



RSA Cryptosystem (“Fast”)[Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n);  private key = d
Encryption of m:  c = me mod n

• Modular exponentiation by repeated squaring
Decryption of c:   cd mod n = (me)d mod n = m

Why RSA Decryption Works (“Fast”)
e⋅d=1 mod ϕ(n)
Thus e⋅d=1+k⋅ϕ(n)=1+k(p-1)(q-1) for some k

Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

Since p and q are distinct primes and p⋅q=n, 

   med=m mod n

Why Is RSA Secure? (“Fast”)

RSA problem: given n=pq, e such that 
   gcd(e,(p-1)(q-1))=1 and c, find m such that
   me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by 
taking eth root of c

• There is no known efficient algorithm for doing this

Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy, but 
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n

Caveats (“Fast;”  Note first bullet)

Don’t use RSA directly 
e =3 is a common exponent

• If m < n1/3, then c = m3 < n and can just take the cube 
root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to 
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m



Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create 
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard

OAEP (image from PKCS #1 v2.1)

Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob

RSA Signatures

Public key is (n,e), private key is d
To sign message m:  s = md mod n

• Signing and decryption are the same operation in RSA
• It’s infeasible to compute s on m if you don’t know d

To verify signature s on message m:   
    se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify 

signatures produced with d (private key)

 In practice, also need padding & hashing (why?)



Encryption and Signatures

Books often say:  Encryption and decryption are 
inverses, so use decryption as signatures

That’s a common view
• True for the RSA primitive

But not the cryptographic view
• To really use RSA, we need padding
• Some encryption schemes don’t have natural signature 

analogs and vice versa.

Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before 
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of 
authenticity of public keys
• No need to keep public keys secret, but must be sure that 

Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a 

shared secret, then switch to symmetric crypto
– We’ll see this in IPSec and SSL

Keys are longer
• 1024 bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven 
assumptions)


