
Applied Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2008)

Goals for Today

 Asymmetric Cryptography
 CELT: Center for Engineering Learning and

Teaching
 Reminder: Midterm on Friday. (Closed book.)

• Contents up through the material for Monday (through
symmetric crypto)

• Not as hard as last year’s midterm.
• Make sure you understand the core concepts so far in

this course:

Requirements for Public-Key Crypto

Key generation: computationally easy to generate a
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK

given only public key PK

Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts (“Skip”)

Euler totient function ϕ(n) where n≥1 is the number
of integers in the [1,n] interval that are relatively
prime to n
• Two numbers are relatively prime if their greatest

common divisor (gcd) is 1

Euler’s theorem:
 if a∈Zn*, then aϕ(n)=1 mod n

Special case: Fermat’s Little Theorem
 if p is prime and gcd(a,p)=1, then ap-1=1 mod p

RSA Cryptosystem (“Fast”)[Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n); private key = d
Encryption of m: c = me mod n

• Modular exponentiation by repeated squaring
Decryption of c: cd mod n = (me)d mod n = m

Why RSA Decryption Works (“Fast”)
e⋅d=1 mod ϕ(n)
Thus e⋅d=1+k⋅ϕ(n)=1+k(p-1)(q-1) for some k

Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

Since p and q are distinct primes and p⋅q=n,

 med=m mod n

Why Is RSA Secure? (“Fast”)

RSA problem: given n=pq, e such that
 gcd(e,(p-1)(q-1))=1 and c, find m such that
 me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by
taking eth root of c

• There is no known efficient algorithm for doing this

Factoring problem: given positive integer n, find
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n

Caveats (“Fast;” Note first bullet)

Don’t use RSA directly
e =3 is a common exponent

• If m < n1/3, then c = m3 < n and can just take the cube
root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M,
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard

OAEP (image from PKCS #1 v2.1)

Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob

RSA Signatures

Public key is (n,e), private key is d
To sign message m: s = md mod n

• Signing and decryption are the same operation in RSA
• It’s infeasible to compute s on m if you don’t know d

To verify signature s on message m:
 se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify

signatures produced with d (private key)

 In practice, also need padding & hashing (why?)

Encryption and Signatures

Books often say: Encryption and decryption are
inverses, so use decryption as signatures

That’s a common view
• True for the RSA primitive

But not the cryptographic view
• To really use RSA, we need padding
• Some encryption schemes don’t have natural signature

analogs and vice versa.

Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of
authenticity of public keys
• No need to keep public keys secret, but must be sure that

Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a

shared secret, then switch to symmetric crypto
– We’ll see this in IPSec and SSL

Keys are longer
• 1024 bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven
assumptions)

