
Applied Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2008)

Goals for Today

 Symmetric
 Reminder: Midterm on Friday. (Closed book.)

• Contents up through the material for today
• Not as hard as last year’s midterm.
• Make sure you understand the core concepts so far in

this course:
– Threat modeling
– Software security

• Problems
• Defensive approaches

– Symmetric cryptography
• Components, definitions, security properties, classic

problems

Which Property Do We Need?

UNIX passwords stored as hash(password)
• One-wayness: hard to recover password

 Integrity of software distribution
• Weak collision resistance
• But software images are not really random… maybe need

full collision resistance
Auction bidding

• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B
• Collision resistance: Alice should not be able to change

her mind to bid B’ such that H(B)=H(B’)

Common Hash Functions

MD5
• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

RIPEMD-160
• 160-bit variant of MD5

SHA-1 (Secure Hash Algorithm)
• 160-bit output
• US government (NIST) standard as of 1993-95

– Also the hash algorithm for Digital Signature Standard (DSS)

Basic Structure of SHA-1 (Skip)
Against padding attacks

Split message into 512-bit blocks

Compression function
• Applied to each 512-bit block
 and current 160-bit buffer
• This is the heart of SHA-1

160-bit buffer (5 registers)
initialized with magic values

SHA-1 Compression Function (Skip)

Current message block

Current buffer (five 32-bit registers A,B,C,D,E)

Buffer contains final hash value

Very similar to a block cipher,
with message itself used
as the key for each round

Four rounds, 20 steps in each

Let’s look at each step
in more detail…

Fifth round adds the original
buffer to the result of 4 rounds

A EB C D

A EB C D

+

+

ft
5 bitwise
left-rotate

Wt

Kt

One Step of SHA-1 (80 steps total) (Skip)

Special constant added
(same value in each 20-step round,
4 different constants altogether)

Logic function for steps
• (B∧C)∨(¬B∧D) 0..19
• B⊕C⊕D 20..39
• (B∧C)∨(B∧D)∨(C∧D) 40..59
• B⊕C⊕D 60..79

Current message block mixed in
• For steps 0..15, W0..15=message block
• For steps 16..79,
 Wt=Wt-16⊕Wt-14⊕Wt-8⊕Wt-3

+

+

Multi-level shifting of message blocks

30 bitwise
left-rotate

How Strong Is SHA-1?

Every bit of output depends on every bit of input
• Very important property for collision-resistance

Brute-force inversion requires 2160 ops, birthday
attack on collision resistance requires 280 ops

Some very recent weaknesses (2005)
• Collisions can be found in 263 ops

Authentication Without Encryption

Integrity and authentication: only someone who knows KEY can
 compute MAC for a given message

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

HMAC

Construct MAC by applying a cryptographic hash
function to message and key
• Could also use encryption instead of hashing, but…
• Hashing is faster than encryption in software
• Library code for hash functions widely available
• Can easily replace one hash function with another
• There used to be US export restrictions on encryption

 Invented by Bellare, Canetti, and Krawczyk (1996)
• HMAC strength established by cryptographic analysis

Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

Embedded hash function
(strength of HMAC relies on

strength of this hash function)

“Black box”: can use this HMAC
construction with any hash function
(why is this important?)

Block size of embedded hash function

Secret key padded
to block size

magic value (flips half of key bits)

another magic value
(flips different key bits)

hash(key,hash(key,message))

“Amplify” key material
(get two keys out of one)

Very common problem:
given a small secret, how to
derive a lot of new keys?

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Alice Bob

K K

M/invalid

K K

M
Encrypt Decrypt

C

Key K

.Message M

.Ciphertext C Adversary

Recall: Often desire both privacy and integrity. (For SSH,
SSL, IPsec, etc.)

Some subtleties! Encrypt-and-MAC

valid/invalid

M

DecryptKe VerifyKm

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

TC’

Ciphertext

Return M if
valid

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

But insecure! [BN, Kra]

Assume Alice sends messages:

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

If Ti = Tj then Mi = Mj

	 Adversary learns whether two plaintexts are equal.

Especially problematic when M1, M2, ... take on only a small
number of possible values.

The Secure Shell (SSH) protocol is designed to provide:

• Secure remote logins.

• Secure file transfers.

Where security includes:

• Protecting the privacy of users’ data.

• Protecting the integrity of users’ data.

OpenSSH is included in the default installations of OS X and
many Linux distributions.

C’

paddingpdlpl

1 byte4 bytes

M

T

EncryptKe MACKm

M
Data to be

communicated

ctr

4 bytes

Maintained internally; not
transmitted

EKe,Km

Ciphertext packet

Authenticated encryption in SSH

T1C’1

EncryptKe MACKm

M1ctr1

T2T1

M2M1 FIREFIRE

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2 FIREFIRE

Then the tags T1 and T2 will be different with high probability.

10

But if counters repeat, tags may once
again leak private information about data.

Results of [BN00,Kra01]

Strong (CTXT)

Strong (CCA) Weak (CPA) InsecurePrivacy

Integrity Weak (PTXT) Weak (PTXT)

MAC-then-EncryptEncrypt-then-MAC Encrypt-and-MAC

M MACKm

TM

EncryptKe

C
Ciphertext C

M

EncryptKe MACKm

TC’
Ciphertext C

EncryptKe

M

MACKmC’

TC’
Ciphertext C

Basic Problem

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself

public key

public key

Alice Bob

Applications of Public-Key Crypto

Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (maybe)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
 given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
 given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy

Decisional Diffie-Hellman (DDH) problem:
 given gx and gy, it’s hard to tell the difference

between gxy mod p and gr mod p where r is random

Properties of Diffie-Hellman

Assuming DDH problem is hard, Diffie-Hellman
protocol is a secure key establishment protocol
against passive attackers
• Eavesdropper can’t tell the difference between established

key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide
authentication

