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Goals for Today

# Cryptography Background
4 Symmetric (Shared-Key Foundations)

Basic Problem

Basic Internet model: Communications through untrusted
intermediaries.
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Important for: Secure remote logins, file transfers, web
access, ....

Symmetric Setting

late and di I in some

Solution: Ei
secure way.

Symmetric setting: Both parties share some secret
information, called a key.
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Achieving Privacy

Encryption schemes
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History

# Substitution Ciphers
« Caesar Cipher

# Transposition Ciphers

# Codebooks

# Machines

#Recommended Reading: The Codebreakers by
David Kahn.
« Military uses
¢ Rumrunners

Achieving Integrity

Message authentication schemes or message authentication
codes or MACs
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Achieving Both Privacy and Integrity

Authenticated encryption scheme

(Authenticated encryption notion is “new” (around 2000), so
many books and protocols don’t discuss this. Can be

subtle!!!)
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How this is achieved

@ Layered approach:
 Cryptographic primitives, like block ciphers, stream
ciphers, and hash functions
« Cryptographic protocols, like CBC mode encryption,
CTR mode encryption, HMAC message authentication
#Today:
o Start on the above. Basic concepts. Basic pitfalls.

OCB auth. encryption CBC-MAC auth.
CBC encryption /' CTR encryption HMAC auth.
block cipher hash functions

Asymmetric Setting (NOT today)

Asymmetric setting: Public and Secret keys. (Can help
establish shared secret keys K.)
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One-Time Pad
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Key s a random bit sequence
as long as the plaintext

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ® key =
(plaintext ® key) @ key =
plaintext & (key & key) =
plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext @ key

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon)

Advantages of One-Time Pad

@ Easy to compute
« Encryption and decryption are the same operation
 Bitwise XOR is very cheap to compute
# As secure as theoretically possible
« Given a ciphertext, all plaintexts are equally likely,
regardless of attacker’s computational resources
e ...as long as the key sequence is truly random
— True randomness is expensive to obtain in large quantities
o ...as long as each key is same length as plaintext
— But how does the sender communicate the key to receiver?




Disadvantages

= 10111101, 1111101
g “@—10001111..
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= 00110010, 00110010... =

Key is a random bit sequence
as long as the plaintext

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ® key =
(plaintext ® key) ® key =
plaintext & (key © key) =
plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext © key

Disadvantage #1: Keys as long as messages.
Impractical in most scenarios
Still used by intelligence communities

Disadvantages
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sequence
text

Decrypt by bitwise XOR of

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext @ key

plaintext @ (key ® key) =
plaintext

Disadvantage #2: No integrity protection

Disadvantages

Disadvantage #3: Keys cannot be reused
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Learn relationship between plaintexts:
C18C2 = (P1EK)B(P2EK) = (P1EP2)B(KEK) = P1EP2

Reducing Keysize

4 What do we do when we can't pre-share huge
keys?
* When OTP is unrealistic

® We use special cryptographic primitives
« Single key can be reused (with some restrictions)

« But no longer provable secure (in the sense of the OTP)

®Examples: Block ciphers, stream ciphers




Background: Permutation

A wWwN =
A wWN =

CODE becomes DCEO

® For N-bit input, N! possible permutations

#Idea: split plaintext into blocks, for each block use
secret key to pick a permutation, rinse and repeat
» Without the key, permutation should “look random”

Block Ciphers

@ Operates on a single chunk (“block”) of plaintext
« For example, 64 bits for DES, 128 bits for AES
« Same key is reused for each block (can use short keys)

Plaintext

block
cipher

Key

Block Cipher Security

#Result should look like a random permutation
« "As if” plaintext bits were randomly shuffled

#Only computational guarantee of secrecy
« Not impossible to break, just very expensive
—If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search
« Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

Procedure must be reversible
(for decryption)

Block of ciphertext




Feistel Structure (Stallings Fig 2.2)

Plaintext Qw bit)

wbits wbits Ry

K

DES

# Feistel structure
 “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

« After 3 random rounds, ciphertext indistinguishable from
a random permutation (Luby & Rackoff)

#DES: Data Encryption Standard
o Feistel structure
« Invented by IBM, issued as federal standard in 1977
* 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys (stallings Tab 2.2)

@56 bit keys are quite short

Number of Alternative
K

‘Time required at 105
Key Size (bits) t1 i
2 22 =310 2! s =358 minutes 2.15 milliseconds
56 2% =72x 106 255 ps = 1142 years 1001 hours
128 2126 =34 x10% 2127 s =54 % 10% years 54 101 years
168 2168 =37 x 105 2167 s = 5.9 x 10% years 5.9 % 10% years
f;r‘"“:"“;":n“) 261=4x10% 2 10% s = 6.4 x 101 years 64 %106 years

#1999: EFF DES Crack + distibuted machines
® < 24 hours to find DES key
#DES ---> 3DES

« 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

# New federal standard as of 2001

#Based on the Rijndael algorithm

4 128-bit blocks, keys can be 128, 192 or 256 bits
@ Unlike DES, does not use Feistel structure

* The entire block is processed during each round

# Design uses some very nice mathematics




Basic Structure of Rijndael

oooo o
OOoo 128-bit plaintext

128-bit key
DZED (arranged as 4x4 array of 8-bit bytes)

byte substitution

shift array rows
(1% unchanged, 274 left by 1, 3¢ lft by 2, 47 left by 3)

mix 4 bytes in each column ( Expand key

(each new byce depends on ll ytes i ok colurn)
add key for this round

repeat 10 times

Encrypting a Large Message

#So, we've got a good block cipher, but our plaintext
is larger than 128-bit block size
@ Electronic Code Book (ECB) mode
 Split plaintext into blocks, encrypt each
one separately using the block cipher
# Cipher Block Chaining (CBC) mode
« Split plaintext into blocks, XOR each block with the result
of encrypting previous blocks
@ Counter (CTR) mode

 Use block cipher to generate keystream, like a stream
cipher

...
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