High-level information

- Instructor: Tadayoshi Kohno (Yoshi)
 - Office: CSE 558
 - Office hours: Wednesdays, 10:30 to 11:20am (right after class, may change)
 - Open door policy – don’t hesitate to stop by!
- TAs: Alexei Czeskis and Karl Koscher
 - Office/hours: See website (TBD)
- Course website
 - Assignments, reading materials, lecture notes
- Course email list (and blog)
 - Student discussions, announcements

Prerequisites

- Required: Data Structures (CSE 326)
- Required: Machine Org and Assembly (CSE 378)
- Assume: Working knowledge of C and assembly
 - One of the projects involves writing buffer overflow attacks in C
 - You must have detailed understanding of x86 architecture, stack layout, calling conventions, etc.
- Assume: Working knowledge of software engineering tools for Unix environments (gdb, etc)
- Assume: Working knowledge of Java and JavaScript

Prerequisites

- Recommended: Computer Networks; Operating Systems
 - Will help provide deeper understanding of security mechanisms and where they fit in the big picture
- Recommended: Complexity Theory; Discrete Math; Algorithms
 - Will help with the more theoretical aspects of this course.
Prerequisites

† Most of all: Eagerness to learn!
• This is a 400 level course.
• I expect you to push yourself to learn as much as possible.
• I expect you to be a strong, independent learner capable of learning new concepts from the lectures, the readings, and on your own.

Course Logistics

† Lectures: Mon, Wed, Fri: 9:30 to 10:20am
† Recitations: Thurs: 8:30 to 9:20am
† Security is a contact sport!
† Projects (40% of the grade)
 • Projects involve a lot of programming
 • Can be done in teams of 2-3 students
† Homeworks (20% of grade)
 • Textbook-style questions (10%)
 • Blog entries (10%)
† Midterm (15% of the grade)
† Final (25% of the grade)

Late Submission Policy

† Homeworks should be turned in at the start of class on the due date
† Blog posts and projects should also be turned in on time
† Late assignments will be dropped 20% per day.
 • Late days will be rounded up
 • So an assignment turned in 1.25 days late will be downgraded 40%.
† Homeworks generally due on Fridays, some exceptions.

Course Materials

† Textbooks:
 Pfleeger and Pfleeger, “Security in Computing” (Main textbook)
 Kaufman, Perlman, and Speciner, “Network Security” (Secondary textbook)
† Lectures will not follow the textbooks
 • Lectures will focus on "big-picture" principles and ideas
 • Attend lectures. Lectures will cover some material that is not in the textbook – and you will be tested on it!
 (Also make sure to read the blog)
† Plus assigned readings from other sources
Other Helpful Books (all online)

- Ross Anderson, "Security Engineering"
 - Focuses on design principles for secure systems
 - Wide range of entertaining examples: banking, nuclear command and control, burglar alarms
 - You should all at least look at the Table of Contents for this book.
- Kaashoek and Saltzer, "Principles of Computer System Design"
- Menezes, van Oorschot, and Vanstone, "Handbook of Applied Cryptography"

What does “security” mean to you?

Two key themes of this course

- How to think about security
 - The Security Mindset - "new" way to think about systems
 - Threat models, security goals, assets, risks, adversaries
 - Connection between security, technology, politics, ethics, ...
 - The first few lectures, and the blog
 - http://slashdot.org/
- Technical aspects of security
 - Attack techniques
 - Defenses

Technical Themes

- Vulnerabilities of computer systems
 - Software problems (buffer overflows); crypto problems; network problems (DoS, worms); people problems (usability, phishing)
- Defensive technologies
 - Protection of information in transit: cryptography, security protocols
 - Protection of networked applications: firewalls and intrusion detection
 - "Defense in depth"
What This Course is Not About
- Not a comprehensive course on computer security
 - Computer security is a broad discipline!
 - Impossible to cover everything in one quarter
 - Not much language-based security
 - Moderate discussion of crypto (crypto could take a whole year of courses)
 - So be careful in industry or wherever you go!
- Not about all of the latest and greatest attacks
 - Read bugtraq or other online sources instead
- Not a course on ethical, legal or economic issues
 - We will touch on ethical issues, but not focus on them
- Not a course on how to “hack” or “crack” systems

What is Computer Security?
- Systems may fail for many reasons
- Reliability deals with accidental failures
- Usability deals with problems arising from operating mistakes made by users
- Security deals with intentional failures created by intelligent parties
 - Security is about computing in the presence of an adversary
 - But security, reliability, and usability are all related

What Drives the Attackers?
- Adversarial motivations:
 - Money, fame, malice, curiosity, politics....
 - Fake websites, identity theft, steal money and more
 - Control victim's machine, send spam, capture passwords
 - Industrial espionage and international politics
 - Access copy-protected movies and videos
 - Attack on website, extort money
 - Wreak havoc, achieve fame and glory

Growing Problem

<table>
<thead>
<tr>
<th>Year</th>
<th>Vulnerabilities reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>4,000</td>
</tr>
<tr>
<td>1996</td>
<td>4,000</td>
</tr>
<tr>
<td>1997</td>
<td>4,000</td>
</tr>
<tr>
<td>1998</td>
<td>4,000</td>
</tr>
<tr>
<td>1999</td>
<td>4,000</td>
</tr>
<tr>
<td>2000</td>
<td>4,000</td>
</tr>
<tr>
<td>2001</td>
<td>4,000</td>
</tr>
<tr>
<td>2002</td>
<td>4,000</td>
</tr>
<tr>
<td>2003</td>
<td>4,000</td>
</tr>
<tr>
<td>2004</td>
<td>4,000</td>
</tr>
<tr>
<td>2005</td>
<td>4,000</td>
</tr>
</tbody>
</table>
Challenges: What is “Security?”
- What does security mean?
 - Often the hardest part of building a secure system is figuring out what security means
 - What are the assets to protect?
 - What are the threats to those assets?
 - Who are the adversaries, and what are their resources?
- **Perfect security does not exist!**
 - Security is not a binary property
 - Security is about risk management

From Policy to Implementation
- After you’ve figured out what security means to your application, there are still challenges
 - How is the security policy enforced?
 - Design bugs
 - Poor use of cryptography
 - Poor sources of randomness
 - Implementation bugs
 - Buffer overflow attacks
 - Is the system usable?

Many Participants
- Many parties involved
 - System developers
 - Companies deploying the system
 - The end users
 - The adversaries (possibly one of the above)
- Different parties have different goals
 - System developers and companies may wish to optimize cost
 - End users may desire security, privacy, and usability
 - But the relationship between these goals is quite complex (will customers choose not to buy the product if it is not secure?)

Other (Mutually-Related) Issues
- Do consumers actually care about security?
- Security is expensive to implement
- Plenty of legacy software
- Easier to write “insecure” code
- Some languages (like C) are unsafe
Approaches to Security

- Prevention
 - Stop an attack
- Detection
 - Detect an ongoing or past attack
- Response
 - Respond to attacks
- The threat of a response may be enough to deter some attackers

Blog and Security Reviews

- Previous courses looked at
 - Nike+iPod Sport Kit
 - Wireless keyboards
 - iPhone
 - Zune
 - SingBox
 - Nintendo Wii
 - Dodgeball
 - Netflix
 - ...

Homework 1

Ethics

- In this class you will learn about how to attack the security and privacy of (computer) systems.
- Knowing how to attack systems is a critical step toward knowing how to protect systems.
- But one must use this knowledge in an ethical manner.
- In order to get a non-zero grade in this course, you must sign the "Security and Privacy Code of Ethics" form by the start of class on Jan 14 (next Monday).