Some “Big Picture” Issues

Don’t rely on “security through obscurity”

- Easy to learn how locks work
 - Insiders
 - Tinkerers
- Easy to learn how software works
 - Insiders
 - Tinkerers
- Examples: DRM, reverse engineering software patches

Have an open, peer-reviewed (or at least outside expert-reviewed) design

Usability is a major challenge

- Locks:
 - If locks are too complicated, people may not use them
 - But then locks don’t provide any security
 - See Blaze’s “safecracking” paper for an example - class 1 safes are more secure, but have awkward security mechanisms
- Computers:
 - If security mechanisms are too difficult, people won’t use them
 - Example: Personal firewall or antivirus warnings
- Make “secure option” the “default” or “option of least resistance”
Some “Big Picture” Issues

Many potential ways to compromise security

- Physical security
 - Attack locks
 - Attack the door itself
 - Attack windows
 - Hide in bushes
- Computer security
 - Attack the cryptography (if done poorly)
 - Attack the configuration
 - Attack the implementation
 - Attack the user

“Security only as strong as the weakest link”

Systems are complex

Some “Big Picture” Issues

Defense in depth

- Physical world
 - Layers of locks in bank
 - Layers of protection mechanisms around jails
 - Castles: Moats, walls, arrows, ...
- Digital world
 - Same concepts apply

Deterrents

- Physical world
 - Video cameras
 - ADT (home security alarm system)
- Digital world
 - Digital forensics methods

Some “Big Picture” Issues

Not all systems require the same level of security

- Locks
 - Weak locks may be OK to protect you gym cloths
 - But may want stronger locks to protect the contents of your bank’s safes
- Computer security
 - Different assets, adversaries, protection mechanisms

“Security is risk management”

Some “Big Picture” Issues

Packaging (sometimes called “snake oil”)

- Physical world
 - May look secure, but may be easy to circumvent
- Digital world
 - May appear secure, but may actually be very insecure

How is a user supposed to figure out whether something is secure?

Some “Big Picture” Issues

Issues at all phases of development lifecycle

- Physical world
 - Requirements: Master keys (whether to have or not)
 - Design: Master keys (design choices, e.g., master pin depths)
 - Implementation: Lock picking
- Digital world
 - Same issues apply

Better to address security issues as early in the lifecycle as possible

Some “Big Picture” Issues

Denial of service

- Locks
 - Chewing gum
 - Super glue
 - Break a key
- Computers
 - Crash computer, consume resources

Accidents

- Locks
 - Keys on both sides (fire hazard)
- Computers
 - Encrypted filesystem (forget key)
 - ...
Applications of Public-Key Crypto

- Encryption for confidentiality
 - Anyone can encrypt a message
 - With symmetric crypto, must know secret key to encrypt
 - Only someone who knows private key can decrypt
 - Key management is simpler (maybe)
 - Secret is stored only at one site: good for open environments
- Digital signatures for authentication
 - Can "sign" a message with your private key
- Session key establishment
 - Exchange messages to create a secret session key
 - Then switch to symmetric cryptography (why?)

Some "Big Picture" Issues

- Many different adversaries
 - Insiders
 - Ex-insiders (past employees, with copies of keys)
 - Pranksters
 - Outsiders
 - ...

Some "Big Picture" Issues

- Big difference: Connectedness
 - Physical world
 - Not very connected
 - (Yes, some exceptions, e.g., postal system or air travel)
 - Digital world
 - Everyone is everyone else's "neighbor"
 - Plus quite a bit of anonymity

Some "Big Picture" Issues

- Arms race
 - Physical world
 - New lock designs, better safes
 - Digital world
 - New cryptography
 - New software development practices
 - Software updates

Some "Big Picture" Issues

- Big difference: Connectedness
 - Physical world
 - Not very connected
 - Digital world
 - Everyone is everyone else's "neighbor"

Basic Problem

- Given: Everybody knows Bob's public key
 - Only Bob knows the corresponding private key
- Goals: 1. Alice wants to send a secret message to Bob
 - 2. Bob wants to authenticate himself

Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- Public info: \(p \) and \(g \)
 - \(p \) is a large prime number, \(g \) is a generator of \(Z_p^* \)
 - \(Z_p^* = \{1, 2, ..., p-1\} \) such that \(a \equiv g^b \mod p \)
 - Modular arithmetic: numbers "wrap around" after they reach \(p \)
- Alice:
 - Pick secret, random \(x \)
 - Compute \(g^x \mod p \)
- Bob:
 - Pick secret, random \(y \)
 - Compute \(g^y \mod p \)
- Compute \(k = (g^y)^x = g^{xy} \mod p \)
Why Is Diffie-Hellman Secure?

- **Discrete Logarithm (DL) problem:**
 - Given \(g^x \mod p \), it's hard to extract \(x \)
 - There is no known efficient algorithm for doing this
 - This is not enough for Diffie-Hellman to be secure!
- **Computational Diffie-Hellman (CDH) problem:**
 - Given \(g^x \) and \(g^y \), it's hard to compute \(g^{xy} \mod p \)
 - ... unless you know \(x \) or \(y \), in which case it's easy
- **Decisional Diffie-Hellman (DDH) problem:**
 - Given \(g^x \) and \(g^y \), it's hard to tell the difference between \(g^{xy} \mod p \) and \(g^r \mod p \) where \(r \) is random

Properties of Diffie-Hellman

- **Assuming DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against passive attackers**
 - Eavesdropper can’t tell the difference between established key and a random value
 - Can use new key for symmetric cryptography
 - Approx. 1000 times faster than modular exponentiation
- **Diffie-Hellman protocol (by itself) does not provide authentication**

Requirements for Public-Key Crypto

- **Key generation:** computationally easy to generate a pair (public key \(PK \), private key \(SK \))
 - Computationally infeasible to determine private key \(SK \) given only public key \(PK \)
- **Encryption:** given plaintext \(M \) and public key \(PK \), easy to compute ciphertext \(C=E_{PK}(M) \)
- **Decryption:** given ciphertext \(C=E_{PK}(M) \) and private key \(SK \), easy to compute plaintext \(M \)
 - Infeasible to compute \(M \) from \(C \) without \(SK \)
 - Even infeasible to learn partial information about \(M \)
 - **Trapdoor function:** \(\text{Encrypt}(SK,\text{Encrypt}(PK,M))=M \)

Some Number Theory Facts

- **Euler totient function \(\phi(n) \)** where \(n \geq 1 \) is the number of integers in the \([1,n]\) interval that are relatively prime to \(n \)
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
- **Euler's theorem:**
 - if \(a \in Z_* \), then \(a^{\phi(n)}=1 \mod n \)
- **Special case: Fermat's Little Theorem**
 - if \(p \) is prime and gcd\((a,p)=1\), then \(a^{p-1}=1 \mod p \)

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

- **Key generation:**
 - Generate large primes \(p, q \)
 - Say, 1024 bits each (need primality testing, too)
 - Compute \(n=pq \) and \(\phi(n)=(p-1)(q-1) \)
 - Choose small \(e \), relatively prime to \(\phi(n) \)
 - Typically, \(e=3 \) or \(e=2^{16}+1=65537 \) (why?)
 - Compute unique \(d \) such that \(ed=1 \mod \phi(n) \)
 - Public key = (\(e,n \)); private key = \(d \)
- **Encryption of \(m \):** \(c=m^e \mod n \)
 - Modular exponentiation by repeated squaring
- **Decryption of \(c \):** \(c^d \mod n = (m^e)^d \mod n = m \)

Why RSA Decryption Works

- \(ed=1 \mod \phi(n) \)
- Thus \(ed=1+k\phi(n)=1+k(p-1)(q-1) \) for some \(k \)
 - Let \(m \) be any integer in \(Z_n \)
 - If gcd\((m,p)=1\), then \(m^{ed}=m \mod p \)
 - By Fermat's Little Theorem, \(m^{p-1}=1 \mod p \)
 - Raise both sides to the power \(k(q-1) \) and multiply by \(m \)
 - \(m^{1+k(p-1)(q-1)}=m \mod p \), thus \(m^{ed}=m \mod p \)
 - By the same argument, \(m^{ed}=m \mod q \)

- Since \(p \) and \(q \) are distinct primes and \(p\cdot q=n \), \(m^{ed}=m \mod n \)
Why Is RSA Secure?

- **RSA problem**: given $n=pq$, e such that $\gcd(e, (p-1)(q-1))=1$ and c, find m such that $m^e=c \mod n$
 - i.e., recover m from ciphertext c and public key (n,e) by taking eth root of c
 - There is no known efficient algorithm for doing this
- **Factoring** problem: given positive integer n, find primes $p_1, ..., p_k$ such that $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$
- If factoring is easy, then RSA problem is easy, but there is no known reduction from factoring to RSA
 - It may be possible to break RSA without factoring n

Caveats

- $e=3$ is a common exponent
 - If $m < n^{1/3}$, then $c = m^3 < n$ and can just take the cube root of c to recover m
 - Even problems if "pad" m in some ways [Hastad]
 - Let $c = m^3 \mod n$ - same message is encrypted to three people
 - Adversary can compute $m^1 \mod n_1n_2n_3$ (using CRT)
 - Then take ordinary cube root to recover m
- Don't use RSA directly

Integrity in RSA Encryption

- Plain RSA does not provide integrity
 - Given encryptions of m_1 and m_2, attacker can create encryption of m_1m_2
 - $(m_1^e) \cdot (m_2^e) \mod n = (m_1m_2)^e \mod n$
 - Attacker can convert m into m^3 without decrypting
 - $(m^e)^3 \mod n = (m^3)^e \mod n$
- In practice, OAEP is used: instead of encrypting M, encrypt $M \oplus G(r) \oplus r \oplus H(M \oplus G(r))$
 - r is random and fresh, G and H are hash functions
 - Resulting encryption is plaintext-aware: infeasible to compute a valid encryption without knowing plaintext
 - ... if hash functions are "good" and RSA problem is hard

OAEP (image from PKCS #1 v2.1)

Digital Signatures: Basic Idea

- Public key is (n,e), private key is d
- To sign message m: $s = m^d \mod n$
 - Signing and decryption are the same operation in RSA
 - It's infeasible to compute s on m if you don't know d
- To verify signature s on message m: $s^e \mod n = (m^d)^e \mod n = m$
 - Just like encryption
 - Anyone who knows n and e (public key) can verify signatures produced with d (private key)
- In practice, also need padding & hashing (why?)

RSA Signatures

- Given: Everybody knows Bob's public key
- Only Bob knows the corresponding private key

Goal: Bob sends a "digitally signed" message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key
Encryption and Signatures

- **Book says:** Encryption and decryption are inverses.
- **That’s a common view**
 - True for the RSA primitive
- **But not one we’ll take**
 - To really use RSA, we need padding
 - And there are many other decryption methods

Digital Signature Standard (DSS)

- U.S. government standard (1991-94)
 - Modification of the ElGamal signature scheme (1985)
- **Key generation:**
 - Generate large primes p, q such that q divides $p-1$,

 \[-2^{160} < q < 2^{160}, \frac{q}{2^{160}} < p < 2^{2161}\text{ where } 0 < cB\]
 - Select $h \in \mathbb{Z}_p^*$ and compute $g = h^{(p-1)/q} \mod p$
 - Select random x such $1 \times x \in q - 1$, compute $y = g^x \mod p$
- **Public key:** $(p, q, g, y = g^x \mod p)$, private key: x
- **Security of DSS** requires hardness of discrete log
 - If could solve discrete logarithm problem, would extract x (private key) from $g^x \mod p$ (public key)

DSS: Signing a Message

Algorithm:
1. **Message**
2. **Hash function** (SHA-1)
3. **Random secret** between 0 and q
4. Compute $r = (g^k \mod p) \mod q$
5. **Private key**
6. Compute $s = k^{-1}((H(M)) + x \cdot r) \mod q$
7. (r, s) is the signature on M

DSS: Verifying a Signature

Algorithm:
1. **Message**
2. **Signature**
3. **Public key**
4. Compute $w = s' - 1 \mod q$
5. Compute $(g^{H(M)w} \mod p)^r \mod q$
6. If they match, signature is valid

Why DSS Verification Works

- **If (r, s) is a legitimate signature,** then
 \[r = (g^k \mod p) \mod q; \quad s = k^{-1}((H(M)) + x \cdot r) \mod q\]
- **Thus $H(M) = -x \cdot r + k \cdot s \mod q$**
 - Multiply both sides by $w = s^{-1} \mod q$
 \[g^{H(M)w} + x \cdot r \cdot w = k \mod q\]
 - Exponentiate g to both sides
 \[(g^{H(M)w})^w + x \cdot r \cdot w = g^k \mod p \cdot q\]
 - In a valid signature, $g^k \mod p \cdot q = r, g^k \mod p = y$
- **Verify** $g^{H(M)w} \cdot y^w = r \mod p \cdot q$

Security of DSS

- **Can’t create a valid signature** without private key
- **Given a signature**, hard to recover private key
- **Can’t change or tamper with signed message**
- **If the same message is signed twice**, signatures are different
 - Each signature is based in part on random secret k
- **Secret k must be different** for each signature!
 - If k is leaked or if two messages re-use the same k, attacker can recover secret key x and forge any signature from then on
Advantages of Public-Key Crypto

- Confidentiality without shared secrets
 - Very useful in open environments
 - No "chicken-and-egg" key establishment problem
 - With symmetric crypto, two parties must share a secret before they can exchange secret messages
 - Caveats to come
- Authentication without shared secrets
 - Use digital signatures to prove the origin of messages
 - Reduce protection of information to protection of authenticity of public keys
 - No need to keep public keys secret, but must be sure that Alice's public key is really her true public key

Disadvantages of Public-Key Crypto

- Calculations are 2-3 orders of magnitude slower
 - Modular exponentiation is an expensive computation
 - Typical usage: use public-key cryptography to establish a shared secret, then switch to symmetric crypto
 - We'll see this in IPSec and SSL
- Keys are longer
 - 1024 bits (RSA) rather than 128 bits (AES)
- Relies on unproven number-theoretic assumptions
 - What if factoring is easy?
 - Factoring is believed to be neither P, nor NP-complete
 - (Of course, symmetric crypto also rests on unproven assumptions)

Authentication of Public Keys

Problem: How does Alice know that the public key she received is really Bob's public key?

Using Public-Key Certificates

- Single CA certifying every public key is impractical
- Instead, use a trusted root authority
 - For example, Verisign
 - Everybody must know the public key for verifying root authority's signatures
- Root authority signs certificates for lower-level authorities, lower-level authorities sign certificates for individual networks, and so on
 - Instead of a single certificate, use a certificate chain
 - $\text{sig}_{\text{Verisign}}(\text{"UW"}, \text{PK}_{\text{UW}}); \text{sig}_{\text{UW}}(\text{"Alice"}, \text{PK}_{\text{Alice}})$
 - What happens if root authority is ever compromised?

Hierarchical Approach
Many Challenges

Many Challenges

Alternative: “Web of Trust”

X.509 Authentication Service

X.509 Certificate

Certificate Revocation
Certificate Revocation Mechanisms

- Online revocation service
 - When a certificate is presented, recipient goes to a special online service to verify whether it is still valid
 - Like a merchant dialing up the credit card processor
- Certificate revocation list (CRL)
 - CA periodically issues a signed list of revoked certificates
 - Credit card companies used to issue thick books of canceled credit card numbers
 - Can issue a "delta CRL" containing only updates
- Question: does revocation protect against forged certificates?

X.509 Certificate Revocation List

- Certificate Revocation List
- Online revocation service
 - When a certificate is presented, recipient goes to an online revocation service to check whether it is valid
- X.509 Certificate Revocation List
 - Certificates are used across the internet and must be validated
 - Can issue a "delta CRL" containing only updates
- Question: does revocation protect against forged certificates?

X.509 Version 1

- Encrypt, then sign for authenticated encryption
 - Goal: achieve both confidentiality and authentication
 - E.g., encrypted, signed password for access control
- Does this work?

Attack on X.509 Version 1

- Receiving encrypted password under signature does not mean that the sender actually knows the password!

Authentication with Public Keys

- "I am Alice" and fresh random challenge C are authenticated with public keys.
- Only Alice can create a valid signature
- Signature is on a fresh, unpredictable challenge

Potential problem: Alice will sign anything
Early Version of SSL (Simplified)

- **Bob’s reasoning:** I must be talking to Alice because...
 - Whoever signed N_b knows Alice’s private key... Only Alice knows her private key... Alice must have signed N_b... N_b is fresh and random and I sent it encrypted under K_{AC}... Alice could have learned N_b only if she knows K_{AB}... She must be the person who sent me K_{AB} in the first message...

Breaking Early SSL

- **Charlie uses his legitimate conversation with Alice to impersonate Alice to Bob**
 - Information signed by Alice is not sufficiently explicit

Breaking Early SSL

- **Charlie uses his legitimate conversation with Alice to impersonate Alice to Bob**
 - Information signed by Alice is not sufficiently explicit

Breaking Early SSL

- **Charlie uses his legitimate conversation with Alice to impersonate Alice to Bob**
 - Information signed by Alice is not sufficiently explicit

Breaking Early SSL

- **Charlie uses his legitimate conversation with Alice to impersonate Alice to Bob**
 - Information signed by Alice is not sufficiently explicit
Breaking Early SSL

- Charlie uses his legitimate conversation with Alice to impersonate Alice to Bob
 - Information signed by Alice is not sufficiently explicit

Security Evaluation #2

- You’ll be looking at WinZip’s new AE-2 encryption scheme
 - Based on “Encrypt-then-MAC” (recall a few classes ago --- this is a provably secure mode)
 - But things aren’t always that simple
 - Many protocols seem secure but actually have problems
 - Your job: Analyze AE-2

What is WinZip?

WinZip encryption

WinZip has the ability to encrypt files. Lots of history, but we’ll look at the AE-2 method.
Zipping a file without AE-2 (high level)

File → Compression Algorithm → Compressed Data

Zipping a file with AE-2 (high level)

File → Compression Algorithm → Archive.zip
Zipping a file with AE-2 (high level)

File → Compression Algorithm → Compressed Data

Header
- compression type
- File date/time
- CRC-32
- Filename

CRC-32 = 0
compression type = AE

Zipping a file with AE-2 (high level)

File → Compression Algorithm → Compressed Data

Header
- compression type
- File date/time
- CRC-32
- Filename

CRC-32 = 0
compression type = AE
Zipping a file with AE-2 (high level)

File → Compression Algorithm

Passphrase → PBKDF
Zipping a file with AE-2 (high level)

File → Compression Algorithm → AES-CTR then HMAC-SHA1

File → Compression Algorithm

Passphrase → PBKDF

Passphrase → PBKDF
Zipping a file with AE-2 (high level)

File → Compression Algorithm → AES-CTR then HMAC-SHA1 → Encrypted and MACed Data

Passphrase → PBKDF → AES-CTR then HMAC-SHA1 → Encrypted and MACed Data

Header
- compression type = AE
- File date/size
- CRC-32 = 0
- Filename
- Version = 2
- Compression type
- Salt
- Key check val
- Encrypted and MACed Data

File date/size
- compression type
- Version = 2
- Compression type
- Salt
- Key check val
- Encrypted and MACed Data