Computer Security and Privacy

Tadayoshi Kohno

http://www.cs.washington.edu/education/courses/490k/07sp

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov (slides), Bennet Yee, ...
High-level information

Instructor: Tadayoshi Kohno (Yoshi)
- Office: CSE 558
- Office hours: Mondays, 12:30 - 1:20pm
- Open door policy – don’t hesitate to stop by!

TA: Nicholas Murphy (Nick)
- Office/hours: See website (TBD)

Course website
- Assignments, reading materials, lecture notes

Course email list
- Student discussions, announcements
Prerequisites

- Required: Data Structures
- Required: Working knowledge of C and assembly
 - One of the projects involves writing buffer overflow attacks in C
 - You must have detailed understanding of x86 architecture, stack layout, calling conventions, etc.
- “Required:” Working knowledge of software engineering tools for Unix environments (gdb, etc)
Prerequisites

- **Recommended:** Computer Networks; Operating Systems
 - Will help provide deeper understanding of security mechanisms and where they fit in the big picture

- **Recommended:** Complexity Theory; Discrete Math; Algorithms
 - Will help with the more theoretical aspects of this course.
Prerequisites

◆ Most of all: Eagerness to learn!
 • This is a 400 level course.
 • I expect you to push yourself to learn as much as possible.
 • I expect you to be a strong, independent learner capable of learning new concepts from the lectures, the readings, and on your own.
Course Logistics

◆ Lectures
 - Tuesday, Thursday 12:00 - 1:20pm

◆ Projects (35% of the grade)
 - Projects involve a fair bit of programming
 - Can be done in teams of 2-3 students
 - Security is a contact sport!

◆ Homeworks (20% of grade)
 - Textbook-style questions (10%)
 - Security evaluations (10%)

◆ Midterm (15% of the grade)

◆ Final (30% of the grade)

Exceptional work may be rewarded with extra credit

No make-up or substitute exams!
If you are not sure you will be able to take the exams in class on the assigned dates, **do not take this course!**
Late Submission Policy

- Assignments should be turned in at the start of class on the due date.
- Late assignments will be dropped 20% per day.
 - Late days will be rounded up.
 - So an assignment turned in 1.25 days late will be downgraded 40%.
Course Materials

Textbooks:
- Stamp, “Information Security” (Main textbook)
- Stallings, “Network Security Essentials”
 - Lectures will not follow the textbooks
 - Lectures will focus on “big-picture” principles and ideas of network attack and defense
 - Attend lectures! Lectures will cover some material that is not in the textbook – and you will be tested on it!

- Plus assigned readings from other sources
Other Helpful Books (all online)

 • Focuses on design principles for secure systems
 • Wide range of entertaining examples: banking, nuclear command and control, burglar alarms

◆ Kaashoek and Saltzer, “Principles of Computer System Design”

◆ Menezes, van Oorschot, and Vanstone, “Handbook of Applied Cryptography”
Main Themes of the Course

◆ Thinking about security
 - Threat models, security goals, assets, risks

◆ Vulnerabilities of computer systems
 - Software problems (buffer overflows); crypto problems; network problems (DoS, worms); people problems (usability, phishing)

◆ Defensive technologies
 - Protection of information in transit: cryptography, security protocols
 - Protection of networked applications: firewalls and intrusion detection
 - “Defense in depth”
What This Course is Not About

- **Not** a comprehensive course on computer security
 - Computer security is a **broad** discipline!
 - Impossible to cover everything in one quarter
 - No language-based security
 - Moderate discussion of crypto (crypto could take a whole course!)
 - So be careful in industry or wherever you go!

- **Not** about all of the latest and greatest attacks
 - Read bugtraq or other online sources instead

- **Not** a course on ethical, legal or economic issues
 - We will touch on ethical issues, but not focus on them

- **Not** a course on how to “hack” or “crack” systems
What is Computer Security?

- Systems may fail for many reasons
- **Reliability** deals with accidental failures
- **Usability** deals with problems arising from operating mistakes made by users
- **Security** deals with intentional failures created by intelligent parties
 - Security is about computing in the presence of an adversary
What Drives the Attackers?

- Adversarial motivations:
 - Money, fame, malice, curiosity, politics....
- Fake websites, identity theft, steal money and more
- Control victim’s machine, send spam, capture passwords
- Industrial espionage and international politics
- Access copy-protected movies and videos
- Attack on website, extort money
- Wreak havoc, achieve fame and glory
AOL Subscribers Sue Over Release Of Search Data

Posted by timothy on Monday September 25 @06:07PM
from the titillatin'-'litigatin' dept.

An anonymous reader points out an AP story indicating that AOL hasn't seen the end of its own public

OpenSSL Hit by Forgery Bug

Posted by ScuttleMonkey on Monday September 25 @06:56PM
from the last time dept.

Daniel Cray writes to tell us ZDNet is reporting that OpenSSL versions up to 0.9.7] and 0.9.8b are vulnerable to a signature forgery technique. OpenSSL has already released an update fixing the problem. From the article:

"The flaw only affects a particular type of signature--PKCS #1 v1.5 signatures--but these are used by some certificate authorities. [...] The signature forgery technique was first
Growing Problem

Vulnerabilities reported (http://www.cert.org/stats/)
Challenges: What is “Security?”

What does security mean?
- Often the hardest part of building a secure system is figuring out what security means
- What are the assets to protect?
- What are the threats to those assets?
- Who are the adversaries, and what are their resources?
- What is the security policy?

Perfect security does not exist!
- Security is not a binary property
- Security is about risk management
From Policy to Implementation

After you’ve figured out what security means to your application, there are still challenges

- How is the security policy enforced?
- Design bugs
 - Poor use of cryptography
 - Poor sources of randomness
 - ...
- Implementation bugs
 - Buffer overflow attacks
 - ...
- Is the system *usable*?

Don’t forget the users! They are a critical component!
Many Participants

Many parties involved

- System developers
- Companies deploying the system
- The end users
- The adversaries (possibly one of the above)

Different parties have different goals

- System developers and companies may wish to optimize cost
- End users may desire security, privacy, and usability
- But the relationship between these goals is quite complex (will customers choose not to buy the product if it is not secure?)
Other (Mutually-Related) Issues

- Do consumers actually care about security?
- Security is expensive to implement
- Plenty of legacy software
- Easier to write “insecure” code
- Some languages (like C) are unsafe
Example: Electronic Voting

Popular replacement to traditional paper ballots
Pre-Election

Pre-election: Poll workers load “ballot definition files” on voting machine.
Pre-Election

Pre-election: Poll workers load “ballot definition files” on voting machine.
Active Voting

Active voting: Voters obtain single-use tokens from poll workers. Voters use tokens to *active machines* and vote.
Active voting: Voters obtain single-use tokens from poll workers. Voters use tokens to active machines and vote.
Active voting: Voters obtain single-use tokens from poll workers. Voters use tokens to active machines and vote.
Active voting: Voters obtain single-use tokens from poll workers. Voters use tokens to active machines and vote.
Active Voting

Active voting: Votes encrypted and stored. Voter token canceled.
Active Voting

Active voting: Votes encrypted and stored. Voter token canceled.
Active Voting

Active voting: Votes encrypted and stored. Voter token canceled.
Post-Election

Post-election: Stored votes transported to tabulation center.
Post-Election

- **Poll worker**
 - Ballot definition file
- **Voter**
 - Interactively vote
 - Voter token
 - Encrypted votes
 - Recorded votes
- **Tabulator**

Post-election: Stored votes transported to tabulation center.
Security and E-Voting (Simplified)

◆ Functionality goals:
 • Easy to use
 • People should be able to cast votes easily, in their own language or with headphones for accessibility

◆ Security goals:
 • Adversary should not be able to tamper with the election outcome
 – By changing votes
 – By denying voters the right to vote
 • Is it OK if an adversary can do the above, assuming you can catch him or her or them?
 • Adversary should not be able to figure out how voters vote
Can You Spot Any Potential Issues?

Post-election: Stored votes transported to tabulation center.
Potential Adversaries

- Voters
- Election officials
- Employees of voting machine manufacturer
 - Software/hardware engineers
 - Maintenance people
- Other engineers
 - Makers of hardware
 - Makers of underlying software or add-on components
 - Makers of compiler
- ...
- Or any combination of the above
What Software is Running?

Problem: An adversary (e.g., a poll worker, software developer, or company representative) able to control the software or the underlying hardware could do whatever he or she wanted.
Problem: Ballot definition files are not authenticated.

Example attack: A malicious poll worker could modify ballot definition files so that votes cast for “Mickey Mouse” are recorded for “Donald Duck.”
Problem: Ballot definition files are not authenticated.

Example attack: A malicious poll worker could modify ballot definition files so that votes cast for “Mickey Mouse” are recorded for “Donald Duck.”
Problem: Ballot definition files are not authenticated.

Example attack: A malicious poll worker could modify ballot definition files so that votes cast for “Mickey Mouse” are recorded for “Donald Duck.”
Problem: Ballot definition files are not authenticated.

Example attack: A malicious poll worker could modify ballot definition files so that votes cast for “Mickey Mouse” are recorded for “Donald Duck.”
Problem: Smartcards can perform cryptographic operations. But there is no authentication from voter token to terminal.

Example attack: A regular voter could make his or her own voter token and vote multiple times.
Problem: Smartcards can perform cryptographic operations. But there is no authentication from voter token to terminal.

Example attack: A regular voter could make his or her own voter token and vote multiple times.
Problem: Smartcards can perform cryptographic operations. But there is no authentication from voter token to terminal.

Example attack: A regular voter could make his or her own voter token and vote multiple times.
Problem: Smartcards can perform cryptographic operations. But there is no authentication from voter token to terminal.

Example attack: A regular voter could make his or her own voter token and vote multiple times.
Problem: Smartcards can perform cryptographic operations. But there is **no authentication from voter token to terminal**.

Example attack: A regular voter could make his or her own voter token and **vote multiple times**.
Problem: Encryption key ("F2654hD4") hard-coded into the software since (at least) 1998. Votes stored in the order cast.

Example attack: A poll worker could determine how voters vote.
Problem: Encryption key ("F2654hD4") hard-coded into the software since (at least) 1998. Votes stored in the order cast.

Example attack: A poll worker could determine how voters vote.
Problem: Encryption key (‘‘F2654hD4’’) hard-coded into the software since (at least) 1998. Votes stored in the order cast.

Example attack: A poll worker could determine how voters vote.
Problem: When votes transmitted to tabulator over the Internet or a dialup connection, they are decrypted first; the cleartext results are sent to the tabulator.

Example attack: A sophisticated outsider could determine how votes vote.
Problem: When votes transmitted to tabulator over the Internet or a dialup connection, they are decrypted first; the cleartext results are sent the the tabulator.

Example attack: A sophisticated outsider could determine how votes vote.
Problem: When votes transmitted to tabulator over the Internet or a dialup connection, they are **decrypted first**; the cleartext results are sent to the tabulator.

Example attack: A sophisticated outsider could determine how votes vote.
Whole-System is Critical

- Securing a system involves a **whole-system view**
 - Cryptography
 - Implementation
 - People
 - Physical security
 - Everything in between

- This is because “security is only as strong as the weakest link,” and security can fail in many places
 - No reason to attack the strongest part of a system if you can walk right around it.
Analyzing the Security of a System

◆ First thing: Summarize the system as clearly and concisely as possible
 - Critical step. If you can’t summarize the system clearly and concisely, how can you analyze its security?

◆ Next steps:
 - Identify the assets: What do you wish to protect?
 - Identify the adversaries and threats: What might an attacker try to do?
 - Identify vulnerabilities: Weaknesses in the system
 - Calculate the risks
Assets

- Need to know what you are protecting!
 - Hardware: Laptops, servers, routers, PDAs, phones, ...
 - Software: Applications, operating systems, database systems, source code, object code, ...
 - Data and information: Data for running and planning your business, design documents, data about your customers, data about your identity
 - Reputation, brand name
 - Responsiveness

- Assets should have an associated value (e.g., cost to replace hardware, cost to reputation, how important to business operation)
Adversaries

- National governments
- Terrorists
- Thieves
- Business competitors
- Your supplier
- Your consumer
- New York Times
- Your family members (parents, children)
- Your friends
- Your ex-friends
- ...
Threats

Threats are actions by adversaries who try to exploit vulnerabilities to damage assets

- Spoofing identities: Attacker pretends to be someone else
- Tampering with data: Change outcome of election
- Denial of service: Attacker makes voting machines unavailable on election day
- Elevation of privilege: Regular voter becomes admin

Specific threats depend on environmental conditions, enforcement mechanisms, etc

- You must have a clear, simple, accurate understanding of how the system works!
Threats

Several ways to identify threats

- By damage done to the assets
- By the source of attacks
 - (Type of) insider
 - (Type of) outsider
 - Local attacker
 - Remote attacker
 - Attacker resources
Vulnerabilities

◆ Weaknesses of a system that could be exploited to cause damage
 • Accounts with system privileges where the default password has not been changed (Diebold: 1111)
 • Programs with unnecessary privileges
 • Programs with known flaws
 • Known problems with cryptography
 • Weak firewall configurations that allow access to vulnerable services
 • ...

◆ Sources for vulnerability updates: CERT, SANS, Bugtraq, the news(?)
Risks

◆ Quantitative risk management
 • Example: Risk = Asset × Threat × Vulnerability
 • Monetary value to assets
 • Threats and vulnerabilities are probabilities
 • (Yes: Difficult to assign these costs and probabilities)

◆ Qualitative risk management
 • Assets: Critical, very important, important, not important
 • Vulnerabilities: Has to be fixed soon, should be fixed, fix if convenient
 • Threats: Very likely, likely, unlikely, very unlikely
Security is Subtle

- Security attacks can be subtle
- So need to think careful!
 - And keep the whole system in mind
- Phishing one example
 - If attacker can trick user into entering private information, then no protection mechanism will help
 - (So research tries to focus on helping users not be tricked)
Another Example: Drive-By Pharming

- Designed to provide a **firewall** to external machines (keep the bad guys out)
Another Example: Drive-By Pharming

Another Example: Drive-By Pharming

Assumes router has default password

Another Example: Drive-By Pharming

Another Example: Drive-By Pharming

Many Desirable Security Properties

- Authenticity
- Confidentiality
- Integrity
- Availability
- Accountability and non-repudiation
- Freshness
- Access control
- Privacy of collected information
- ...
Syllabus

- Thinking about security; the “big picture”
 - The hardest part: Getting the “security mindset”
- Software security, buffer overflow attacks
- Cryptography
 - Block ciphers, stream ciphers, hash functions, MACs, public key encryption, digital signatures, PKI, key exchange, protocols (SSL/TLS, IPsec, Kerberos)
- Authentication, passwords, biometrics
- Trusted computing, secure hardware, tamper resistance
Syllabus

- Wireless security, including RFIDs, 802.11, and the future
- Web security and privacy, cross-site scripting, cookies, spyware
- Anonymous communications: Tor, attacks and defenses
- Information leakage and covert channels
- TCP/IP security, routing security, DNS security
- Firewall and intrusion detection systems
- Botnets and worms
Attack on Confidentiality

Confidentiality is concealment of information

Eavesdropping, packet sniffing, illegal copying
Attack on Integrity

- Integrity is prevention of unauthorized changes

Intercept messages, tamper, release again
Attack on Authenticity

- Authenticity is identification and assurance of origin of information

Unauthorized assumption of another’s identity
Attack on Availability

- **Availability** is *ability to use information or resources desired*

Overwhelm or crash servers, disrupt infrastructure
Protocol Stack

Only as secure as the single weakest layer... Or the interconnection between the layers.
Defenses

- **People**
 - End uses
 - Password managers, user-centered design, company policies, ...

- **Blueprints**
 - Protocols and policies
 - SSL, IPSec, access control...

- **Building blocks**
 - Cryptographic primitives
 - RSA, DSS, SHA-1...

End uses

Implementations

Protocols and policies

Cryptographic primitives
Correctness versus Security

- **System correctness**: system satisfies specification
 - For reasonable input, get reasonable output
- **System security**: system properties preserved in face of attack
 - For unreasonable input, output not completely disastrous
- **Main difference**: active interference from adversary
- **Modular design may increase vulnerability**
 - Abstraction is difficult to achieve in security: what if the adversary operates below your level of abstraction?
- **Modular design may increase security**: small TCB
- **Complexity** may increase vulnerability
Bad News

- Security often not a primary consideration
 - Performance and usability take precedence
- Feature-rich systems may be poorly understood
 - Higher-level protocols make mistaken assumptions
- Implementations are buggy
 - Buffer overflows are the “vulnerability of the decade”
- Networks are more open and accessible than ever
 - Increased exposure, easier to cover tracks
- No matter what technical mechanisms you have, people may circumvent them
 - Phishing, impersonation, write down passwords, ...
Better News

- There are a lot of defense mechanisms
 - We’ll study some, but by no means all, in this course

- It’s important to understand their limitations
 - “If you think cryptography will solve your problem, then you don’t understand cryptography... and you don’t understand your problem” -- Bruce Schneier
 - Security is not a binary property
 - Many security holes are based on misunderstanding

- Security awareness and user “buy-in” help

- Other important factors: usability and economics
Approaches to Security

- **Prevention**
 - Stop an attack

- **Detection**
 - Detect an ongoing or past attack

- **Response**
 - Respond to attacks

- The threat of a response may be enough to deter some attackers
Security Evaluations

- Every week (or so) after the first week, you will get the opportunity to briefly evaluate the security of a real product

- Previous courses looked at
 - Nike+iPod Sport Kit
 - Wireless keyboards
 - iPhone
 - Zune
 - SlingBox
 - Nintendo Wii
 - Dodgeball
 - Netflix
 - ...

In this class you will learn about how to attack the security and privacy of (computer) systems.

Knowing how to attack systems is a critical step toward knowing how to protect systems.

But one must use this knowledge in an ethical manner.

In order to get a non-zero grade in this course, you must sign the “Security and Privacy Code of Ethics” form by the start of class on April 3 (next Tuesday).
Reading

- Read Stamp chapter 1
- Read Anderson chapter 1
- Start looking at Stamp chapter 11
- No class on Thursday -- called out of town :-(