CSE481C Course Information
Multi Robot Systems: Theory and Implementation

People
• James McLurkin, jamesm@cs.washington.edu
• Ryan McElroy, arcanius@cs.washington.edu

Textbook
• No textbook, selected papers over the quarter

Grading
• Four labs with simple write-ups: 10%, 10%, 15%, 15%
• Final project proposal: 20%
• Final Project: 30%

Lab
• We will alternate lecture and lab during the class time. You must attend both classes each week.
• Labs are in CSE 003D
• There is a sign-up for staffed lab hours. Rank your choices.

Course Goals:

Lectures:
• Introduce the key concepts of multi-robot systems:
 • Robotics
 • Communications
 • Distributed Algorithms
 • Configuration Control

Labs:
• Implement one topic from each concept
• System engineering of multi-threaded software
• Measure performance, analyze data

Final Project:
• Implement an algorithm of your design
• Write a clear, thoughtful proposal

Why Multi-Robot Systems?

Multi-Robot systems are best when you have a
• Large area to search, explore, or map
• Need to sense, compute, or manipulate in multiple places

Good applications
• Searching, exploration, surveillance

Future applications
• Distribution, agriculture, rescue

Course Overview
Course Outline

1. Robotics 101 (Lab 1)
 • Behavior-Based systems

2. Networked communications (Lab 2)
 • Ad hoc networks
 • Broadcast and convergecast communications

3. Distributed Algorithms (Lab 3)
 • Consensus
 • Computational geometry

4. Configuration Control (Lab 4)
 • Dispersion, exploration, mapping

5. Other Issues in Multi-Robot Systems
 • Complexity Algorithm Execution
 • Biological systems

6. Final Project

1. Robotics 101
 A robot must Sense, Process, and Actuate
 • Each of these three steps is difficult

 We will only use simple robot controllers in this class
 • Take the robotics capstone for more

2. Network Communications
 If we assume limited communications range, robots must form ad-hoc networks

 ![Network Diagram]

3. Distributed Algorithms
 Combine local processing to produce group results
 • This applies to algorithmic processing, and the physical output of the robots
 • Use computational geometry to reason about the arrangement of the configuration
4. Configuration Control

A configuration is a group of robots and their internal states. Configuration control algorithms modify the configuration to produce some desired configuration.

Example Applications and Multi-Robot System Comparisons

Our Canonical Multi-Robot Application has...

- high robot mobility
- short-range local communication & multi-hop global communication
- a noisy sensor on each robot to measure the positions of other robots
- algorithms that are robust to population changes and robot failures

Multi-Robot Applications are Hard Because of...

- high robot mobility
- short-range local communication & multi-hop global communication
- a noisy sensor on each robot to measure the positions of other robots
- algorithms that are robust to population changes and robot failures

Exploration: Small Group of Complex Robots

Coordinated exploration with three robots from unknown start locations.

The robots are fully autonomous. All computation is performed on-board.

Shown is the perspective of one robot.

Exploration: Large Group of Simple Robots

1. Disperse throughout a building
2. Find an item of interest
3. Lead the user to the item
The Perils of Small Robots in Big Buildings

Comparisons

Single Robots
- Robotics Capstone
- Small Populations (< 10ish)
 - Some single-robot techniques can be adapted
 - Often with complex robots, good sensors, lots of processing
- Medium Populations (< 1000ish)
 - Centralized data structures and control become less practical
 - Switch to distributed algorithms
 - Often with simple robots, limited sensing, limited processing
- Large Populations
 - Must look to nature for inspiration
 - Insect colonies can reach sizes of 20,000,000!

Behavior-Based Control

A behavior is a small program that reads sensors and controls an actuator
- They are reactive, and act like reflexes.
- Behaviors do not plan and have no state (or very limited state)

Example Behaviors for an outdoor driving program:
- GPS navigation
 Sensor: GPS receiver
 Behavior: drive in straight line to goal
- Obstacle avoidance
 Sensor: Laser range finder
 Behavior: move away from nearby obstacles
- Wander
 Sensor: none
 Behavior: move forward some distance, then turn some angle, then repeat
Combining Behaviors

It is difficult to combine all of your tasks into a single behavior
- Hard to program
- Can produce unintended interactions

We need an abstraction to manage many behaviors:
- Combine behaviors, Sequence behaviors, or Subsume behaviors:

<table>
<thead>
<tr>
<th>Sensors</th>
<th>Actuators</th>
</tr>
</thead>
</table>
| Obstacle avoidance | Sensor: Laser range finder
 Behavior: move away from nearby obstacles |
| GPS navigation | Sensor: GPS receiver
 Behavior: move in straight line to goal |
| Wander | Sensor: none
 Behavior: Move forward some distance, turn same angle, then repeat |

Genghis

The behavior-based poster child

Hardware
- 6 legs, 2 motors per leg
 - α-motor for forward/back, β-motor for up/down
- 2 bump sensors (feelers)
- 2 ground detection sensors (switches)

Very limited computation

Subsumption Architecture

Gak! Why so Complicated?

Why not just program it directly?
- That’s what we would do now.
- Back then, there was a political point to make:
 Intelligent-looking behavior can arise from simple processing that is tightly coupled to sensors (aka: the environment) and actuators.
- Behaviors can be compiled from a high-level specification into machine code
- This whole process is called Subsumption Architecture (there was even a compiler!)

For this course:
- The basic concepts of behavior design and arbitration continues in most modern robotic systems
- But your behaviors will be at a higher level of abstraction

Lab 1: Behavior-Based Control

Lab 1: Behavior-Based Control

Goal
- Build a layered control system to guide a robot towards light and away from obstacles
- Measure the robot’s estimate of its pose from odometry compared to ground truth

Experimental Apparatus: SwarmBot

IR Inter-Robot Communications and Localization
Bump skirt for obstacle avoidance

Experimental Apparatus: Data Collection
Radio
Behavior LEDs
Beacon for position measurement

2. Robot Demo!