CSE490ra Tutorial 2: Getting Acquainted with Ink
TA: Shengli Zhou

Overview: Now that you have familiarized yourself with some basic Ink functions, we will review what we have learned and examine some in-depth features of the Ink object. Many of your future projects will require some form of advanced ink manipulation, be it gesture recognition or ink transformation. We will be looking at ways to access specific strokes, find intersection points, as well as some other interesting features of the Ink class. Of course, all of this will be approached from the programming level.
A Quick Review: To make sure that everyone is up to par with basic ink overlay operations, let’s go over setting up a basic ink pad with some editing options.
1. The InkCollector/InkOverlay Class: By now you know that these are the two major classes involved in ink collections. Please note that InkOverlay is a proper superset of InkCollectork, meaning that you can replace any instance of InkCollector with InkOverlay and it will function identically.
2. Selection Modes in the SDK: The advantage of the InkOverlay over the InkCollector is that the InkOverlay supports editing modes of the ink it contains. This is done by modifying the InkOverlayEditingMode attribute of any InkOverlay object. You can do similar things in order to use the erase and select editing modes.
3. Implement Event Methods of Windows Components: As part of the exercise, you needed to implement an action method for the trackbar component. The easiest way to do this is to access the properties dialog of the Windows component, double click on it, and write your method. Another example of this “double-click” interface is to double-click buttons in order to implement the click event for any given button.
Exploring the Ink Class:
1. Stroke Geometry: One of the most basic properties of stroke geometry is a stroke’s bounding box. Just as you may expect, this a rectangle object that encloses all of the points of a particular stroke. Many times, sending an invalidate call to a specific stroke, strokes collection, or ink object will call a redraw on that bounding box, reducing the need to redraw an entire panel. This could prove valuable on a graphically intense application. Another useful method is the GetPoints method of the Stroke class. This allows the user to retrieve an array of points of the polyline curve of the Stroke. Alternatively, you can retrieve an array of the Bezier curve representation of the stroke using the BezierPoints property.
2. Stroke Intersections: One of the most useful features that you may need to rely on when writing a simple recognition function is the intersections that a particular ink object contains. There are three main types of intersection: self-intersection, stroke intersection, and rectangle intersection. The first two of the three are the more important functions, and the last one is an advanced feature that you may use only in special cases. The SelfIntersections property allows the user to access a float array of all of the points of self intersection of a particular stroke. The FindIntersections method of a Stroke takes in the collection of strokes that the current stroke is contained within, and then returns a float array of all the points that the stroke intersects.
3. Packets: At times, depending on the hardware of the tablet you are using, you can have access too information packets of the InkCollector class. What is a packet? It turns out that a packet is an encapsulation of information that is used by the HID driver to a program called Wisptis.exe. Wisptis (short for Windows Ink Services Platform Tablet Input Subsystem) is an executable that interacts directly with digitizer input. It is run whenever a component of the SDK requires some sort of ink or digitizer input information (such as recognition). Using the DesiredPacketDescription property, we can examine an array of System.Guids, static members of the Microsoft.Ink.PacketProperty class. Some of the common and useful packet properties are the x coordinate of the pointer location, y coordinate of the pointer location, pressure of the pen, roll rotation of the pen, and the pitch rotation of the pen.
4. Ink Event Method Implementation: Suppose we want to have the app detect when a stroke is drawn in the InkOverlay, how do we do this? We need to implement the StrokeAdded method of the InkOverlay’s Ink property. This is done using the following syntax:
InkOverlayObject.Ink.StrokesAdded += new StrokesEventHandler(MethodName);

Then, all you need to do is implement a method called MethodName containing the event code when a stroke is added to your InkOverlay.

5. Putting It all Together: Now that we have seen some more of the underlying properties of the Ink class, let’s use what we have learned to build a simple application. In the first step of the process, let build an application that collects ink and outputs some desired data to a text box at the bottom of the screen. This way, we can actually see some of the more useful properties of the Ink.
Next, let’s move on to some simple recognition design. Let’s write some starter code for the second homework assignment. What are some ways that I could use to recognize the tic-tac-toe board? How effective are these? What are the advantages and disadvantages?
Summary: The Ink class and its submembers contains a powerful suite of data. From accessing low level packet data of the digitizer input to manipulating point data of a stroke, you can do pretty much anything you want with ink. It is important to know the hierarchy of the digital ink paradigm because different levels allow different sorts of access. Always refer to the Tablet Book or API if you are not sure about what an Ink function does.
