CSE 490ra Tutorial 1

Spring 2003

TA: Shengli Zhou

I. Objectives: This tutorial is designed to give students who are unfamiliar or have never had exposure the Microsoft Development environment a hands-on look at the basics of visual development. More specifically, we will be looking at the interface of Visual Studio as well as the functionality of the C# programming language. We will examine properties of common Windows components as well as their manipulation.

II. Getting Started: Visual Studio.NET can be downloaded from the MSDNAA developer’s site (exclusive to UW students). It contains the entire .NET framework, as well as Visual Basic, Visual C++, and Visual C#. Beware that this suite of tools can take up over 2GB of space. A better alternative for some may be to just use it in the labs (Sieg 329 and 232), as all the machines have it installed.
III. Starting up VS.NET:
A. The Start Page: The Start Page acts as a gateway to many of VS.NET’s common functions. From here, you can view recent projects, start a new project, look at programming samples, and download updated packages. As a side note, VS.NET will save new programming projects under “Visual Studio Projects” in the “My Documents” folder.
B. Starting a New Project: Click on the “New Project” button on the start page to bring up an options dialog about the new project. On the left side of the dialog, you can pick from different types of projects, such as Visual C++ or Visual Basic projects. On the right, there are templates you can choose from. For the most part, we will be working off of a C# project. You can also name and pick the save path of the project at the bottom of the dialog.
IV. Beginning Your VS.NET Project:

A. The Windows Form: The Windows Form is the base graphical form that your program will work off of when it is executed. Selecting the Form will bring up a list of Form properties in the lower right of the screen. From here, we can set a variety of properties, such as the name of the Form and the text name it displays. We can also set other common properties such as scalability, size, and start position.
B. Working With the Components Toolbox: In order to access the Windows components toolbox, click on the ‘View’ submenu on the main menu bar, and select ‘ToolBox’. Each Windows component can be added into a form by selecting that component and placing it into your form. Later, we will also look at manipulating properties of common Windows components.
V. Common Windows Components:

A. The Windows Panel: In most of your projects, you will need to divide you form into a number of subpanels based on functionality of each panel. For example you may need to have on panel act as a control panel to house all of your form’s controlling buttons. Another panel may act as the main “ink pad” or graphical panel in Tablet PC applications. Also, panels should be docked so that they will resize properly if the entire form is resized. The docking property can be set where all other properties are found, in the lower right hand corner of the form designer. One important function or method the Panel class in C# has is the Invalidate() method. This essentially acts as a repaint method that refreshes any graphical changes of the panel. Essentially, the Windows Panel is a component that is used to house or group other Windows Components.
B. The Splitter: After dividing your form into several panels, you may want to add a few splitters so that you can resize different portions of your application. The splitter acts as a divide between panels so that they may be resized at runtime within the form. Beware that splitters can be a pain, and the best way to go about them is to plan beforehand where you will have them. Splitters are automatically docked to a Windows Panel, and the default docking is left. Generally, how a splitter will dock depends on the order it is added in. For example, if you add a panel, dock it left, and then add a splitter, it will dock to the right edge of the panel. However, if we add the splitter first, it will dock to the left edge of the form, and no matter how we change the orientation of the docking, it will always touch one edge of the form.
C. The Button: The button component is an event component, or one that is used to initiate some type of even in your form and ultimately your application. Buttons can be added pretty much anywhere throughout your form. They can be resized, re-colored, and renamed just like any other Windows component (in the properties dialog at the lower right of the designer screen). In order to implement the action event for your button, you can simply select the button in the Windows designer and double click on it. This will bring up the code view for your form, and automatically generate the method declaration for your button.
D. Other Windows Components: There are a number of other useful Windows components. These include text labels, list views, trackbars, and text boxes. All of these components have the same basic properties that can be manipulated through the designer. Of course, each component also has specialized functions. You can look up specialized methods or properties in the ‘Help’ submenu in VS.NET.

VI. Working With Code in the Windows Designer

A. Windows Generated Code: When you graphically design all of your form components in the form designer, VS.NET automatically generates the code which instantiates and initializes all of the properties of your components. All of this code is under the ‘InitializeComponent()’ method of your form code, and there will be comments before the method indicating that the region of code is Windows generated code. Of course, this is a handy feature because it allows VS.net to translate between a visual and textual code. However, be warned that the region of form generated code is not somewhere that you want to start adding your own code to. It has happened many times were code added manually into the generated code region essentially disappears from the form. This usually occurs when a project is synchronized from CVS or a fresh copy is transferred onto a new computer. What this suggests is that VS.NET refreshes the code for your form based on how your graphical design is laid out. This means that any code you add manually that is NOT reflected in your graphical design WILL BE DELETED. There are a few simple ways to get around this fact. If you need to instantiate other objects in your form, just do it in the constructor. Otherwise, you can write your own instantiation method and call it from the form’s constructor.
B. Coding Format: The coding format of C# follows the conventional Java class format. At the very top of your code, you import the proper libraries with the ‘Using’ keyword followed by the proper library path. Next, you have a class declaration, instance variables, constructor (to initialize your instance variables), and your methods. Like Java, C# also utilizes automatic garbage collection, so you do not have to worry about memory management or clean-up upon function or program disposal. If you have never programmed in Java or are not familiar with the Object-Oriented paradigm, please set up a time with me outside of class.

VII. Summary: VS.NET may be quite different from the IDE’s that many of you have programmed in. It allows for easy manipulation of the graphical aspect of Windows programming. Some people (including Microsoft employees) do not like the high-level view of this IDE, but it is a good gateway for people who have little to no experience in Windows programming. Of course, VS.NET is designed to create applications that run exclusively on the Windows platform, which already limits the possibility of developing on multiple platforms simultaneously. In this class however, the majority of apps specific to the Tablet PC are designed for Windows, and so to make full use of the Tablet PC SDK we must also develop on Windows.
