
CSE 477 Serial Communication 1

Serial Communication

❚ RS-232 (standard serial line)
❙ Point-to-point, full-duplex
❙ Synchronous or asynchronous
❙ Flow control
❙ Variable baud (bit) rates
❙ Cheap connections (low-quality and few wires)

CSE 477 Serial Communication 2

start
bit

8 data
bits

parity
bit

stop
bit

Serial data format

❚ Variations: parity bit; 1, 1.5, or 2 stop bits

CSE 477 Serial Communication 3

all wires active low

"0" = -12v, "1" = 12v

special driver chips that
generate ±12v from 5v

RS-232 wires

❚ TxD – transmit data
❚ TxC – transmit clock
❚ RTS – request to send: Handshake
❚ CTS – clear to send : Handshake

❚ RxD – receive data
❚ RxC – receive clock
❚ DSR – data set ready: Handshake
❚ DTR – data terminal ready: Handshake

❚ Ground

CSE 477 Serial Communication 4

Transfer modes

❚ Synchronous
❙ clock signal wire is used by both receiver and sender to sample data

❚ Asynchronous
❙ no clock signal in common
❙ data must be oversampled (16x is typical) to find bit boundaries

❚ Flow control
❙ handshaking signals to control rate of transfer

CLK

CSE 477 Serial Communication 5

baud rate
generator

terminal

RxD
TxD

RxC
TxC

baud rate
generator

async
modem

RxD
TxD
DSR
DTR
CTS
RTS

RxC
TxC

phone line
interface

phone
line

sync
modem

RxD
TxD
DSR
DTR
CTS
RTS

RxC
TxC

phone line
interface

phone
line

Typical connections

❚ Terminal

❚ Asynchronous modem

Synchronous modem

CSE 477 Serial Communication 6

8051 Serial Interface

❚ TxD: Port 3, pin 1
❙ Transmit data shifted out

❚ RxD: Port 3, pin 0
❙ Receive data shifted in

❚ Full duplex: both operate in parallel
❚ We will use Mode 1 only

❙ asynchronous
❙ 10 bit transfer: 1 start, 8 data, 1 stop
❙ Look at documentation for other modes

❚ Clock for serial shift provided by timer 1
❙ i.e. programmable baud rate
❙ takes away a timer from other uses

CSE 477 Serial Communication 7

Serial Port Control Register (SCON)

❚ Configures the serial interface

CSE 477 Serial Communication 8

Baud Rate Generator

❚ Use timer 1 overflow to generate serial data clock
❙ serial clock is 16x oversampled, i.e. baud rate x16
❙ SMOD bit (PCON register)

❘ 0: divides baud rate by 2
❚ Typical timer 1 setup

❙ auto-reload timer
❙ reload value determines overflow clock rate

❚ Baud rate calculation
❙ Clocks between overflows = clocks
❙ Overflow frequency =
❙ Baud rate (assuming SMOD = 1)

❙ Baud rate =
❙ Max Baud rate =
❙ TH1 value for 9600 baud =

CSE 477 Serial Communication 9

8051 Serial Interface Transmitter

CSE 477 Serial Communication 10

Sending Serial Data

❚ Transmission is initiated by a write to SBUF
❙ start, data and stop bits shifted out automatically
❙ TI (transmit interrupt) set when stop bit goes

❘ indicates that interface is ready for next character
❘ TI can be polled, or used to interrupt
❘ must reset it in the software

CSE 477 Serial Communication 11

8051 Serial Receiver Interface

CSE 477 Serial Communication 12

Receiving Serial Data

❚ Reception is initiated by a 1-0 transition - a start bit
❙ data is sampled and shifted in automatically
❙ on the stop bit, the 8 data bits are loaded into SBUF

❘ same address, but different register and sending SBUF
❙ RI (receive interrupt) set when SBUF is loaded

❘ indicates a character is ready
• next character can start entering before SBUF is read
• must read SBUF before next character arrives

❘ RI can be polled, or used to interrupt
❘ must be reset in the software

CSE 477 Serial Communication 13

Serial Interface Interrupts

❚ RI and TI share the same interrupt
❙ Interrupt #4

❚ Interrupt routine must look at RI and TI to see which caused
the interrupt

❚ Routine must reset RI or TI before returning
❙ If both RI and TI are on, another interrupt will happen right away
❙ Which bit do you check first?

CSE 477 Serial Communication 14

Baud Rate Generator

❚ Use timer 1 overflow to generate serial data clock
❙ serial clock is 16x oversampled, i.e. baud rate x16
❙ SMOD bit (PCON register)

❘ 0: divides baud rate by 2
❚ Typical timer 1 setup

❙ auto-reload timer
❙ reload value determines overflow clock rate

❚ Baud rate calculation
❙ Clocks between overflows = 12 x (256-TH1) clocks
❙ Overflow frequency = Fclk/Clocks-between-overflows
❙ Baud rate (assuming SMOD = 1)

❘ 1/16 x overflow-frequency
❙ Baud rate = 24MHz / (16 x 12 x (256-TH1))
❙ Max Baud rate = 125KHz
❙ TH1 value for 9600 baud = 13

CSE 477 Serial Communication 15

getchar() / putchar()

❚ c = getchar()
❙ returns the character in the buffer, if there is one
❙ returns NULL otherwise
❙ could check for error (character overrun)

❚ r = putchar(c)
❙ sends the character to the serial port, if it is not busy
❙ returns c for normal operation, NULL if port was busy

❚ Simple operation, no need for interrupts

while ((c = getchar) == NULL) { };

while (putchar(c) == NULL) { };

❚ Polling doesn’t allow us to do anything else
❚ If we are busy, we might miss a character

CSE 477 Serial Communication 16

getchar() / putchar() (Part 2)

❚ We’ll add a 1-character buffer for both input and output
❚ getchar()

❙ interrupt when a new character arrives
❙ if the buffer is empty, place character in buffer
❙ otherwise, set error flag (new function to check for errors)
❙ getchar() now looks at the buffer for a character
❙ otherwise the same as before

❚ putchar()
❙ interrupt when a character has been sent
❙ if the buffer has a character, send it to the serial port
❙ putchar() now puts the character into the buffer
❙ otherwise the same as before
❙ what if the buffer is empty when interrupt occurs?

❘ new character to buffer will not be sent
❚ Complication: one interrupt routine for both input and output

CSE 477 Serial Communication 17

getchar() / putchar() (Part 2)

Serial
Port

input
buffer

output
buffer

Main
program

getchar()

putchar()

Interrupt routine

Interrupt routine

Input
character

Output
character

CSE 477 Serial Communication 18

getchar() / putchar() (Part 3)

❚ The 1-character buffer gives us some time to read/write
❙ but not a lot

❚ Extend the 1-character buffers to 32 characters buffers
❙ now we can go away for a long time and not miss incoming characters
❙ we can write out lots of characters and not wait for them all to go

❚ Each buffer now becomes a queue
❙ standard circular queue

❘ 33 character vector (why 33?)
❘ head, tail pointers

❙ initialize on startup
❚ getchar()

❙ interrupt routine writes characters to buffer, getchar() reads
❚ putchar()

❙ putchar() writes characters to buffer, getchar() reads

CSE 477 Serial Communication 19

getchar() / putchar() (Part 3)

Serial
Port

input buffer

output buffer

Main
program

getchar()

putchar()

Interrupt routine

Interrupt routine

Input
character

Output
character

CSE 477 Serial Communication 20

+5v

device
1

device
2

device
n

SCL

SDA

Inter-Integrated Circuit Bus (I2C)

❚ Modular connections on a printed circuit board
❚ Multi-point connections (needs addressing)
❚ Synchronous transfer (but adapts to slowest device)
❚ Similar to Controller Area Network (CAN) protocol

used in automotive applications

CSE 477 Serial Communication 21

SDA

SCL

START STOP

Serial data format

❚ SDA going low while SCL high signals start of data
❚ SDA going high while SCL high signals end of data
❚ SDA can change when SCL low
❚ SCL high (after start and before end) signals that a data bit can

be read

CSE 477 Serial Communication 22

SDA

SCL

1 3 4 5 6 7 8 ack2

Byte transfer

❚ Byte followed by a 1 bit acknowledge from receiver
❚ Open-collector wires

❙ sender allows SDA to rise
❙ receiver pulls low to acknowledge after 8 bits

❚ Multi-byte transfers
❙ first byte contains address of receiver
❙ all devices check address to determine if following data is for them
❙ second byte usually contains address of sender

CSE 477 Serial Communication 23

clk 1

clk 2

SCL

Clock synchronization

❚ Synchronous data transfer with variable speed devices
❙ go as fast as the slowest device involved in transfer

❚ Each device looks at the SCL line as an input as well as driving it
❙ if clock stays low even when being driven high then another device

needs more time, so wait for it to finish before continuing
❙ rising clock edges are synchronized

CSE 477 Serial Communication 24

Arbitration

❚ Devices can start transmitting at any time
❙ wait until lines are both high for some minimum time
❙ multiple devices may start together - clocks will be synchronized

❚ All senders will think they are sending data
❙ possibly slowed down by receiver (or another sender)
❙ each sender keeps watching SDA - if ever different

(driving high, but its really low) then there is another driver
❙ sender that detects difference gets off the bus and aborts

message
❚ Device priority given to devices with

early 0s in their address

CSE 477 Serial Communication 25

Inter-Integrated Circuit Bus (I2C)

❚ Supports data transfers from 0 to 400KHz
❚ Philips (and others) provide many devices

❙ microcontrollers with built-in interface
❙ A/D and D/A converters
❙ parallel I/O ports
❙ memory modules
❙ LCD drivers
❙ real-time clock/calendars
❙ DTMF decoders
❙ frequency synthesizers
❙ video/audio processors

