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Serial Communication

❚ RS-232 (standard serial line)
❙ Point-to-point, full-duplex
❙ Synchronous or asynchronous 
❙ Flow control
❙ Variable baud (bit) rates
❙ Cheap connections (low-quality and few wires)
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Serial data format

❚ Variations: parity bit; 1, 1.5, or 2 stop bits



CSE 477 Serial Communication 3

all wires active low

"0" = -12v, "1" = 12v

special driver chips that 
generate ±12v from 5v

RS-232 wires

❚ TxD – transmit data
❚ TxC – transmit clock
❚ RTS – request to send: Handshake
❚ CTS – clear to send    : Handshake

❚ RxD – receive data
❚ RxC – receive clock
❚ DSR – data set ready: Handshake
❚ DTR – data terminal ready: Handshake

❚ Ground
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Transfer modes

❚ Synchronous
❙ clock signal wire is used by both receiver and sender to sample data

❚ Asynchronous
❙ no clock signal in common
❙ data must be oversampled (16x is typical) to find bit boundaries

❚ Flow control
❙ handshaking signals to control rate of transfer

CLK
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Typical connections

❚ Terminal

❚ Asynchronous modem

Synchronous modem
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8051 Serial Interface

❚ TxD: Port 3, pin 1
❙ Transmit data shifted out

❚ RxD: Port 3, pin 0
❙ Receive data shifted in

❚ Full duplex: both operate in parallel
❚ We will use Mode 1 only 

❙ asynchronous
❙ 10 bit transfer: 1 start, 8 data, 1 stop
❙ Look at documentation for other modes

❚ Clock for serial shift provided by timer 1
❙ i.e. programmable baud rate
❙ takes away a timer from other uses
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Serial Port Control Register (SCON)

❚ Configures the serial interface
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Baud Rate Generator

❚ Use timer 1 overflow to generate serial data clock
❙ serial clock is 16x oversampled, i.e. baud rate x16
❙ SMOD bit (PCON register)

❘ 0: divides baud rate by 2
❚ Typical timer 1 setup

❙ auto-reload timer
❙ reload value determines overflow clock rate

❚ Baud rate calculation
❙ Clocks between overflows =      clocks
❙ Overflow frequency =
❙ Baud rate (assuming SMOD = 1)

❙ Baud rate =
❙ Max Baud rate =
❙ TH1 value for 9600 baud =
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8051 Serial Interface Transmitter
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Sending Serial Data

❚ Transmission is initiated by a write to SBUF
❙ start, data and stop bits shifted out automatically
❙ TI (transmit interrupt) set when stop bit goes

❘ indicates that interface is ready for next character
❘ TI can be polled, or used to interrupt
❘ must reset it in the software
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8051 Serial Receiver Interface
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Receiving Serial Data

❚ Reception is initiated by a 1-0 transition - a start bit
❙ data is sampled and shifted in automatically
❙ on the stop bit, the 8 data bits are loaded into SBUF

❘ same address, but different register and sending SBUF
❙ RI (receive interrupt) set when SBUF is loaded

❘ indicates a character is ready
• next character can start entering before SBUF is read
• must read SBUF before next character arrives

❘ RI can be polled, or used to interrupt
❘ must be reset in the software
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Serial Interface Interrupts

❚ RI and TI share the same interrupt
❙ Interrupt #4

❚ Interrupt routine must look at RI and TI to see which caused 
the interrupt

❚ Routine must reset RI or TI before returning
❙ If both RI and TI are on, another interrupt will happen right away
❙ Which bit do you check first?
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Baud Rate Generator

❚ Use timer 1 overflow to generate serial data clock
❙ serial clock is 16x oversampled, i.e. baud rate x16
❙ SMOD bit (PCON register)

❘ 0: divides baud rate by 2
❚ Typical timer 1 setup

❙ auto-reload timer
❙ reload value determines overflow clock rate

❚ Baud rate calculation
❙ Clocks between overflows = 12 x (256-TH1) clocks
❙ Overflow frequency = Fclk/Clocks-between-overflows
❙ Baud rate (assuming SMOD = 1)

❘ 1/16 x overflow-frequency
❙ Baud rate = 24MHz / (16 x 12 x (256-TH1))
❙ Max Baud rate = 125KHz
❙ TH1 value for 9600 baud = 13



CSE 477 Serial Communication 15

getchar() / putchar()

❚ c = getchar()
❙ returns the character in the buffer, if there is one
❙ returns NULL otherwise
❙ could check for error (character overrun)

❚ r = putchar(c)
❙ sends the character to the serial port, if it is not busy
❙ returns c for normal operation, NULL if port was busy

❚ Simple operation, no need for interrupts

while ((c = getchar) == NULL) { };

while (putchar(c) == NULL) { };

❚ Polling doesn’t allow us to do anything else
❚ If we are busy, we might miss a character
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getchar() / putchar() (Part 2)

❚ We’ll add a 1-character buffer for both input and output
❚ getchar()

❙ interrupt when a new character arrives
❙ if the buffer is empty, place character in buffer
❙ otherwise, set error flag  (new function to check for errors)
❙ getchar() now looks at the buffer for a character
❙ otherwise the same as before

❚ putchar()
❙ interrupt when a character has been sent
❙ if the buffer has a character, send it to the serial port
❙ putchar() now puts the character into the buffer
❙ otherwise the same as before
❙ what if the buffer is empty when interrupt occurs?

❘ new character to buffer will not be sent
❚ Complication: one interrupt routine for both input and output
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getchar() / putchar() (Part 2)
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getchar() / putchar() (Part 3)

❚ The 1-character buffer gives us some time to read/write
❙ but not a lot

❚ Extend the 1-character buffers to 32 characters buffers
❙ now we can go away for a long time and not miss incoming characters
❙ we can write out lots of characters and not wait for them all to go

❚ Each buffer now becomes a queue
❙ standard circular queue

❘ 33 character vector (why 33?)
❘ head, tail pointers

❙ initialize on startup
❚ getchar()

❙ interrupt routine writes characters to buffer, getchar() reads
❚ putchar()

❙ putchar() writes characters to buffer, getchar() reads
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getchar() / putchar() (Part 3)
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Inter-Integrated Circuit Bus (I2C)

❚ Modular connections on a printed circuit board
❚ Multi-point connections (needs addressing)
❚ Synchronous transfer (but adapts to slowest device)
❚ Similar to Controller Area Network (CAN) protocol

used in automotive applications
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SDA

SCL

START STOP

Serial data format

❚ SDA going low while SCL high signals start of data
❚ SDA going high while SCL high signals end of data
❚ SDA can change when SCL low
❚ SCL high (after start and before end) signals that a data bit can 

be read
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SDA

SCL

1 3 4 5 6 7 8 ack2

Byte transfer

❚ Byte followed by a 1 bit acknowledge from receiver
❚ Open-collector wires

❙ sender allows SDA to rise
❙ receiver pulls low to acknowledge after 8 bits

❚ Multi-byte transfers
❙ first byte contains address of receiver
❙ all devices check address to determine if following data is for them
❙ second byte usually contains address of sender
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clk 1

clk 2

SCL

Clock synchronization

❚ Synchronous data transfer with variable speed devices
❙ go as fast as the slowest device involved in transfer

❚ Each device looks at the SCL line as an input as well as driving it
❙ if clock stays low even when being driven high then another device 

needs more time, so wait for it to finish before continuing
❙ rising clock edges are synchronized
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Arbitration

❚ Devices can start transmitting at any time
❙ wait until lines are both high for some minimum time
❙ multiple devices may start together - clocks will be synchronized

❚ All senders will think they are sending data
❙ possibly slowed down by receiver (or another sender)
❙ each sender keeps watching SDA - if ever different

(driving high, but its really low) then there is another driver
❙ sender that detects difference gets off the bus and aborts 

message
❚ Device priority given to devices with

early 0s in their address
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Inter-Integrated Circuit Bus (I2C)

❚ Supports data transfers from 0 to 400KHz
❚ Philips (and others) provide many devices

❙ microcontrollers with built-in interface
❙ A/D and D/A converters
❙ parallel I/O ports
❙ memory modules
❙ LCD drivers
❙ real-time clock/calendars
❙ DTMF decoders
❙ frequency synthesizers
❙ video/audio processors


