Testing and Debugging

✦ Logic Probe - very simple but enough for quick test

✦ Oscilloscope
 ➢ Shows electrical details
 ✦ Benefits: Wideband, accurate
 ✦ Disadvantages: < 4 inputs; triggering

✦ Logic analyzer
 ➢ Shows 0/1 - according to some threshold
 ✦ Benefits: Many channels, trigger on patterns
 ✦ Disadvantages: Idealized waveforms, insufficient access

✦ 3. Embedded test
 ➢ *You* design in built-in test features
 ✦ Benefits: Only way to test large chips
 ✦ Disadvantages: Uses chip area, incomplete scan, difficult design
Logic Probe

✧ Examine one signal
 ✧ Display 0/1/Z/changing
 ✧ Select TTL or CMOS technology (5v)

✧ Catch pulses
 ✧ Connect to signal, set pulse
 ✧ If pulse occurs, probe triggers and catches it

✧ Very rudimentary, but quick to catch simple things
 ✧ Unconnected signals (bad protoboard, broken wire)
 ✧ Wrong connections
 ✧ Bad chips
Oscilloscope

✦ Samples signal voltage over time
 ➤ Displays signal as a waveform, one voltage value per time step

✦ Triggering
 ➤ Choose when to start sampling the signals
 ➤ Slope: rising voltage/falling voltage
 ➤ Threshold: trigger when signal reaches this value

✦ Repeat mode
 ➤ Assume that signal is periodic
 ➤ Repeated triggering captures the same signal
 ➤ You’ll never see a glitch

✦ Capture mode
 ➤ Triggers only once, stores waveform in memory
 ➤ You’ll be very lucky to catch a glitch
Logic analyzers

✦ Instruments for acquiring digital data
 ➢ Wide data “bus” - capture many signals
 ➢ Memory stores bus data
 ➢ Smart triggering decides what data to store
 ➢ Embedded computer processes the data

✦ We use the Tektronix TLA704
 ➢ 128 channels
 ➢ 32k memory per channel
 ➢ 100MHz state
 ➢ 2GSPS sampling
 ➢ Win95 interface
Logic analyzer physical model

✦ A mainframe
 ➤ Housing, bus, controller, UI

✦ Plug-in modules
 ➤ Modules acquire data
 ➤ Ours TLAs have 4 7L1 modules
 › 32k memory depth
 › 100MHz state
 › 32 data and 2 clock each

✦ Probe pods
 ➤ Pods are wire bundles
 ➤ Probes attach to your circuit
 › We have P6417 probes
Probe pods

Logic analyzers
Logic analyzer conceptual model

- All parameters are adjustable
 - Threshold voltage
 - Clock rate
 - Trigger conditions
 - Memory depth
Clocking a logic analyzer

- Samples data every clock cycle
- External/synchronous clocking
 - You supply the clock
 - Use when you need to see long data records
 - Analyzer stores one sample per clock period
- Internal/asynchronous clocking
 - Analyzer supplies the clock
 - 4ns to 50ms
 - Use when you need to see precise timing
 - Find glitches
Triggering and acquisition

- Derive trigger from sampled data
 - Data values
 - Data ranges
 - Signals from another module
 - Internal counters

- Data acquisition is continuous
 - Memory is a circular buffer
 - New samples continually overwrite oldest samples
 - Trigger tells the acquisition to stop

- Triggers can qualify acquisition
 - Store only selected data
Modules are semi-autonomous

- Each module has its own setup
 - Its own clock
 - Its own trigger
 - Acquires and stores its own data

- Modules communicate via their trigger programs
 - Can trigger all modules
 - Or have one module arm another

- All data is time correlated
 - Regardless of the module
System window

✦ Top-level in hierarchy
 ➤ Open other windows
 ✦ Module
 ✦ Data
 ➤ Create new data, listing, and waveform windows
 ➤ Shows which modules are associated with a data window
 ➤ Enable/disable modules
 ➤ Save and load files

✦ *Note: We don't have DSO modules
Module setup window

✦ Each module has its own setup and trigger windows
 ➢ Set up each module independently

✦ Set all parameters
 ➢ Assign channels to groups
 ➢ Thresholds
 ➢ Clock rate
 ➢ Comparisons

✦ Configure setup before trigger
 ➢ Trigger settings depend on the module settings
Module trigger window

- Triggering is the *key* feature of a logic analyzer
 - Tells the analyzer how to find the data that you want
 - Trigger off a data pattern
 - Trigger off a data sequence
 - Multiple states
 - Multiple clauses per state

- Analyzer has a trigger library!

- Logic analyzers are designed for non-repetitive data
 - Unlike an oscilloscope
Data windows

✦ Many types
 ❥ Listing window
 ❥ Waveform window
 ❥ Histogram window
 ❥ Source-data window

✦ Features common to all
 ❥ Cursors
 ❥ Flags
 ❥ Scroll
 ❥ Search
Capturing glitches

✦ Trigger on the glitch
 ✐ Triggering looks for multiple transitions in a clock cycle
 ✐ Captures dynamic hazards

✦ Can also trigger on setup and hold violations
Other features: Activity indicator

- How do you know if a pod is active?
 - Hooked up properly?
 - Seeing data?
Other features: Programmability

✦ Symbols
 ❍ You define in a LUT
 ❍ Analyzer assigns symbols to data patterns

✦ User programs
 ❍ e.g. export to file and continue
Other features: µP support

- Analyzer disassembles data to µP mnemonics
- Requires special module podsets
Testing: The big picture

- The difference between internal and external BW has driven test technology
 1. External test
 2. Embedded scan path
 3. High-BW embedded
 4. Embedded source
 5. ???

External BW ≡ (# of I/O) * (external clock rate)

Internal BW ≡ (# of transistors) * (internal clock rate)

From IEEE Spectrum, 7/99, pgs. 55 / 57

Logic analyzers
Semiconductor scaling confounds testing

- Testing is a key obstacle to future advancement in digital technology
- Need to ensure logic functionality
 - Despite ever-more-limited access to internal logic
- Testing at the board, subsystem, and system level becomes ever harder

From IEEE Spectrum, 7/99, p. 55
System-on-a-chip testing

- IEEE P1500 standard
 - For embedded core test
 - In development
- Standardized core test language
- Standardized core test wrapper
 - Configurable
 - Scalable

From IEEE Spectrum, 7/99, p. 59