Welcome to CSE 477
- Instructor: Carl Ebeling
- Hardware Lab Manager: Chris Morgan

Some basics
- what is a system?
- what is digital system design?

Objectives of this class
- designing real systems
- combining hardware and software
- e.g. projects: graphics display, user interfaces, integrated systems

Class administration and logistics
What is a system (in our case, mostly digital)?

- **A collection of components**
  - work together to perform a function
  - judiciously chosen to meet some constraints
    - cost, size, power consumption, safety
  - communicates with its environment
    - human interaction
    - communication with other systems over wired or wireless networks

- **One person's system is another's component**
  - no universal categories of scope/size
  - subsystems need to be abstracted

- **How is it documented?**
  - interface specification
    - Use a component without knowing about internal design
    - functionality is often implicit in the interface spec
What is digital system design?

- Encompasses all computing systems
  - combination of hardware and software components
  - partitioning design into appropriate components is key
- Many technologies and components to choose from
  - programmable components (e.g., PLDs and FPGAs)
  - processors
  - memories
  - interfaces to analog world (e.g., A/D, D/A, special transducers)
  - input/output devices (e.g., buttons, pressure sensors, etc.)
  - communication links to environment (wired and wireless)
- The Art: Designing a good solution to a problem
  - choosing/defining the right components
  - meeting performance, cost, power, usability, safety constraints
Trends in digital system design

- Forces
  - cost (cheaper), size (smaller), weight (lighter), power (lower)
  - time-to-market (shorter)
  - upgradeability (in-the-field)
  - recyclability (reusable parts)
  - ubiquity (anywhere, everywhere, and highly task-specific)
  - standardization of interfaces (leverage)

- Effects
  - increased use of high-level languages: C, Verilog
  - high-level specifications: formal interface descriptions
  - automatic synthesis tools (hardware and software compilers)
  - programmable hardware (quick to prototype, reconfigurable)
Examples of embedded systems
Programmable hardware

(Re)configurable hardware (e.g., PLDs, FPGAs)
- high-performance interfaces
  - graphics controller
  - communications links
- compute-intensive tasks
  - signal processing
  - graphics processing

Microprocessors and microcontrollers
- “low-performance” system component
  - microcontrollers are fast enough for most things
- allows complex system implementation
  - user interfaces
  - co-ordination of multiple devices
- integration of surrounding logic onto processor chip
  - timers, memories, configurable I/O ports
Systems-on-a-Chip

- processor core
- custom logic optimized to specific application
  - e.g. Viterbi decoder, MPEG2 decoder
- task-specific sensors and actuators
  - (e.g., MEMS)
- application specific instruction sets
  - (e.g., DSP processors)
- reconfigurable logic (FPGA components)
CSE 477

- **Capstone design course**
  - ties together curriculum with an intensive design experience
- **For computer engineering**
  - programming, data structures, operating systems
  - electronics, logic design, computer design
  - communication skills (oral and written), documentation of designs
  - group effort, interaction with users
- **Project experience must have most of these elements**
  - connecting thread through the discipline
  - invaluable opportunity to add to student portfolio
  - just what employers want to hear about
  - independently motivated experiences grad schools like to hear about
Course rationale

- Assignments and exams
  - learn/apply concepts presented in lecture
  - create infrastructure for possible use in projects
  - opportunity to evaluate individual creativity and understanding
  - gain familiarity with laboratory equipment and software
- Embedded system design project
  - wide variety of possibilities in a chosen domain
    - your chance to be creative
  - design reviews of other projects (learn from others' experience)
  - must be possible to complete in 10 short weeks
  - presentation/documentation
    - in-class presentations
    - web-based documentation
Project scope

- Project group: four students
- Project: combination of software and hardware
  - software: 8051 microcontroller, . . .
  - hardware: Xilinx FPGA, memory, . . .
  - interfaces: accelerometer, IR, wireless, display, audio codec, . . .
- Example project domain
  - graphics processor/interface to VGA monitor
  - hardware provides processing power
  - microcontroller provides interface/system integration
  - interesting user interfaces
    - Palm Pilot
    - remote interface
    - accelerometer-based interface
Project Platform - XESS XSV Board
Microcontroller

- Synthesizable 8051 Core
  - SOC IP component
  - Very common in ASICs
- We will interface hardware components to the 8051
  - function call to a filter
  - read/write a frame buffer
  - process ethernet packets
- Partitioning problem between HW and SW is key
  - Interface must be clean and well-defined
- We will simulate system using Xilinx Foundation
Project Organization

- Our focus is the project
- Define, specify, design, build and test a product
  - Concept to prototype in 10 weeks
- We will organize as an Advanced Development group
  - Marketing
  - Architecture
  - Engineering
  - Sales
- Labs and lectures are to support the project
  - Students will help drive
Group Dynamics

- Every class starts with a project meeting
  - Status reports
  - Planning
  - Designing
  - Design reviews
- VP/Engineering rotates
  - Sets agenda for meetings
  - Leads the meetings
  - A scribe will take and publish action items
The Process

- **Product Definition (Marketing) [Week 1/2]**
  - Marketing plan, marketing requirements
- **Product Architecture (System Architect) [Week 3]**
  - Block diagram, component functionality, high-level interfaces
- **Detailed Design Specification (Engineering) [Week 4]**
  - Component specs: interface + functionality
- **Detailed Design (Engineering) [Week 5-8]**
  - Verilog, schematics, test fixtures
- **System Integration (Engineering) [Week 9/10]**
- **Product Demonstration and Documentation (Sales) [Week 11]**
Example Project Ideas

- Real-time image processing, e.g. shrink/zoom/warp/sharpen/...
- Camera-based user interface
  - Gesture, laser guided, ...  
- Multi-modal user interfaces: camera, accelerometer, range-finder, audio, speech-recognition, ...
- Video games?
  - “pong” (with hand-motion interface)
  - fly-through with hand-sensing interface
  - animations
- Simple graphics card
  - Shaded polygon drawing, texture mapping
- Motion capture
- Audio signal-processing, e.g. equalizer
- Use your imagination
**Course schedule**

- **First half**
  - lectures
  - laboratory assignments
  - midterm exam
  - definition and specification of product

- **Second half**
  - detailed design and implementation of product
  - design reviews in the form of presentations
  - documentation on web

- **Project meetings**
  - Every class
Background (prerequisite) material

- **Logic design**
  - combinational logic
  - sequential logic
  - control/data-path
  - Verilog/simulation/synthesis

- **Computer architecture**
  - assembly language programming
  - computer organization
  - memory hierarchy
  - interrupt mechanisms

- **Programming skills**
  - facility with programming in C
  - software engineering skills
    - modularization, interface specifications
Refreshers

Courses

- CSE341 - Programming Languages
- CSE370 - Introduction to Logic Design
- CSE378 - Machine Organization / Assembly Language Programming
- CSE467 - Advanced Digital Design

Find your textbooks and notes from these courses

- review chapters and lecture notes as topics come up
- review written assignments and any projects
Goals for CSE477

- Lots of fun doing projects
  - cool project
  - amaze your friends and family (and future employers)

- Lots of learning in the process
  - you don’t really understand it until you do it
  - great way to end your undergraduate career
  - killer interview material

- Produce some great demos
  - wow your friends and family