Electronic Badge System

Final Design Report

Prepared for CSE 477

Prepared by

Chia-Yang Hung

Frans Faizal

Man-Hing Wong

May 18, 2001

Electronic Inc.

Suite 2001, 168th Ave

Seattle, WA 98105

May 29, 2001

Dr. Chris Diorio

Assistant Professor

Department of Computer Science and Engineering

University of Washington

Seattle, WA 98105

Dear Dr. Diorio:

Thank you for letting us to introduce you the latest wireless technology. We are excited to present our final report on the Electronic Badge System (EBS). This final report shows the design of EBS is completely functional. We will prove EBS meets all requirements in the performance section of this report. We will also describe the changes on the final design report and response to the reviewer’s comment. A product brochure is included for your reference.
Most current door security systems require explicit user actions, such as swiping a magnetic card through as a card reader or pressing their fingers against a fingerprint scanner, to authenticate and then open the door. The EBS aims to automate this process so users can open the door by a natural action: walking towards it. The EBS will gather user information, do all the checking and unlock the door accordingly.

Here is how EBS works. The EBS consists of two modules: a DoorModule and a badge. The DoorModule will send an ID request to the user’s badge. The badge, in reply, will send its ID to the DoorModule. Upon the arrival of the badge’s reply, the DoorModule will verify the ID from the Badge. If the ID exists in the database, the user is given the authorization to open the door.

For a detailed design report, please visit our website at http://www.cs.washington.edu/education/courses/cse477/CurrentQtr/projectwebs/groupg/. We hope you enjoy this report, and we are going to have a demo of EBS during our open house on June 4, 2001. Please feel free to contact us at ebssupport@electronicinc.com or 1-800-MY-BADGE (1-800-692-2343) if you have any question. We are looking forward to hearing from you. Thank you for your time and consideration.

Sincerely,

Billian Wong

Chia-yang Hung

Frans Faizal

Electronic Inc.

Executive Summary

The Electronic Badge System (EBS) is a wireless security device that performs a security check on a user identity without user interaction. Unlike any other security mechanism available, the EBS does not require direct user interaction to operate. Also, it eliminates the problem of carrying a physical object, such as a key or a card key, or even memorizing a password. When users enter a building, they get a preprogrammed badge. They can attach it anywhere on their body, or simply put it into their bag or pocket. To get the authorization from the system, all they need to do is to walk towards a door. The system will gather user information and do all the necessary checking without user interaction. The EBS provides a convenience and reliable way for controlling access to secured areas without user interaction.

This report shows you how to build the Electronic Badge System and explains how it works. We are going to talk about the implementation, design trade-offs, testing, and design issues. At the end of the report, we also attach the product brochure, all the necessary codes and schematics that are used to build the product.

How does EBS work?

To use the EBS, the user wears a badge containing a unique ID. When the user walks up to a door, the DoorModule will detect the user’s presence, read the ID of the user’s badge wirelessly, verify it against a database of authorized users, and decided whether to send out the authorize signal to the user. The entire process is automatic and wireless, and all a user needs to do is standing in front of the door.

Implementation

We implemented the EBS prototype as three components: the user detection unit, the wireless link between the badge and the door, and the database-checking unit. The user detection unit uses a sonar kit to measure the distance between the user and the door and compares it to a distance threshold. If a user is detected within the threshold distance, the wireless link is activated, which allows the DoorModule to read the ID on the user’s badge using RF (Radio Frequency) transceivers. Once the DoorModule has received the ID, the database-checking unit, a circuit implemented in FPGA, will verify it against the user database. Depending on the existence of the ID in the database, the database-checking unit will decide whether the authorize signal should be sent to the door mechanism for the user.

Design trade-offs

We made several trade-offs in designing the EBS prototype. First, in building the wireless link between the badge and the door, we had the choices of using RF or Infrared. We chose RF because it eliminates the need for the user to aim the badge directly at the DoorModule, as in the case for Infrared. Therefore, a badge is not restricted to attach to exactly one position on a user’s body. For example, a user can put a badge in his or her pocket, bag or attach it to his or her chest. Next, in implementing the logic for user authentication, we could have used either the micro-controller or FPGA. We chose to implement it in FPGA because this will make it easier to upgrade the EBS prototype. Finally, there were many possible ways to implement the user database in the DoorModule: with a software database management system that connects to our DoorModule over Ethernet, with some SRAM that stores authorized badge IDs, and etc. We chose the simplest option, which was hard-coding the authorized IDs directly into the DoorModule. This is so that we can build a proof-of-concept prototype to evaluate the feasibility of the EBS design in a short period of time.

Testing of the final product

We have finished implementing and testing the EBS prototype. Each component in the system was tested individually first, and then integrated in the final testing of the whole system. We found that the prototype met all the requirements and worked as we expected from analysis of the data we gathered. We also built an additional circuit to demonstrate driving a door latch using our system.

Design issues

On building the EBS, we are restricted to some limitations. The most critical limitation is time constrain. We are given tens weeks to design and implement the EBS from scratch. Due to the timing constraint, we focus on the wireless transmission between the DoorModule and the badge instead of the development of database. On the other hand, through testing we also confirmed the limitations we expected due to the long range of the RF boards used in our design. In one of our test scenarios, we observed that if an object were placed within the detection range of the DoorModule when a user is walking by, the DoorModule would read the ID from the user’s badge even though the user was not within range. Although this problem is present in our prototype, we are confident that it is solvable given more time and a better RF development tool with shorter range.

The Electronic Badge System solves most of the problems associated with current lock system. Although a badge is required to carry within a building, no user interaction is needed to perform an action such as unlocking a door. All a user needs to do is walking towards the door. The prototype of EBS is simple. EBS consists of two modules: a DoorModule and a badge. We have talked about how does EBS work, implementation, design trade-offs and design issues on building the EBS. Moreover, the result of testing we have done proves that EBS meets all the requirements we have set up in the proposal. We are glad to conclude that the development of the Electronic Badge System is successful. For more information, please look at our final design report which we document the implementation detail of the EBS.

Abstract

Most current door security systems require explicit user actions to authenticate the user and to open the door. This can be the users’ swiping a magnetic card through a card reader, pressing their fingers against a fingerprint scanner, or interacting with other kinds of authentication devices. Our Electronic Badge System is a prototype that aims to automate this process so that users can open the door by their natural action: walking to the door. We will design a module for the door that can detect users standing near by and automatically authenticate them according a badge they wear. Key technologies we will use in prototyping the system include sonar for estimating the distance between the user from the door, and RF link between the badge and the DoorModule for wireless transmission of digital user ID. We will also explain our plans for testing the system and the individual modules, as well as discuss of some of the trade-offs and issues related to our use of RF technology in the design.

Table of Contents

11.
Introduction

22.
Requirement

33.
Design

33.1.
DoorModule

53.1.1.
Sonar

83.1.2.
RF

103.1.3.
FPGA

223.1.4.
Micro-controller

243.2.
Badge

243.3.
Design Tradeoffs

243.3.1.
RF vs. Infrared

243.3.2.
Database

253.3.3.
32-Bit Counter and Comparator in FPGA

253.3.4.
FPGA vs. Micro-controller for Checking User

253.4.
Critical Design Parameters

263.4.1.
Distance Threshold for Detecting User with the Sonar

263.4.2.
Time out for Messages between the Badge and the DoorModule

263.4.3.
Four-Second Interval for the Authorization Signal

264.
Parts

275.
Analysis

296.
Test Plan

296.1.
Sonar

306.2.
RF link

316.3.
User DB checking

327.
Design Issues

327.1.
RF Range

347.2.
Baud Rate of the Serial Port on the Micro-controller

347.3.
Asynchronous Interface Between the Micro-controller and the FPGA

358.
Response to Reviewers’ Comment on the Preliminary Design Report

379.
Sample Usage of our Product

3910.
Response to Reviewers’ Comment on the Final Design Report

4111.
Performance

4312.
Source Code Listing

5713.
Reference

List of Figures

1Figure 1: Relationship between the door and the badge modules.

3Figure 2: Block diagram of the DoorModule.

4Figure 3: Time sequence of the Electronic Badge System.

5Figure 4: State Diagram of the DoorModule.

5Figure 5: Beam pattern from the transducer.

6Figure 6: Timing diagram of sonar.

7Figure 7: Connection of the sonar ranging module to the micro-controller on the XS-40.

8Figure 8: Timing Diagram of ranging module control lines.

9Figure 9: RF Hardware Setup.

10Figure 10: RF message format.

14Figure 11: Sub-modules inside the ID-Checker module and interaction among them.

20Figure 12: The finite state machine maintained by the CONTROL sub-module.

23Figure 13: Timing Diagram for Passing BadgeID to FPGA.

30Figure 14: Testing sonar.

31Figure 15: Testing RF link.

31Figure 16: Testing UserID checking unit.

32Figure 17: One badge and two doors problem on the badge side of view.

33Figure 18: One badge and two doors problem on the door side of view.

37Figure 19: Motor controller.

38Figure 20: Motor controller FSM

39Figure 21: LED mapping.

40Figure 22: The position of the transducer of the sonr.

40Figure 23: Proposed implementation from the reviewers.

41Figure 24: Testing on the RF of DoorModule and the Badge.

List of Tables

2Table 1: The requirements that must be met by our design.

7Table 2: Pin-out of the connection.

13Table 3: Mapping of signals and pin numbers.

15Table 4: I/O of each sub-module in the ID-Checker.

27Table 5: Parts needed for the Electronic Badge System.

42Table 6: The result of testing on the final product.

1. Introduction

The Electronic Badge System performs a security check on a user identity without user interaction. Unlike any other security mechanism available, the electronic badge does not require direct user interaction to operate. Also, it eliminates the problem of carrying a physical object, such as a key or a card key, or even memorizing a password. When users enter a building, they get a preprogrammed badge. They can attach it anywhere on their body, or simply put it into their bag or pocket. To grant the authorization from the door system, all they need to do is to walk towards a door. Our system will gather user information and do all the necessary checking without user interaction. The electronic badge system provides a convenient and reliable way for controlling access to secured areas without user interaction.

The Electronic Badge System consists of two modules: door and badge modules. The DoorModule will send an ID request to the user’s badge. The badge, in reply, will send its ID to the DoorModule. Upon the arrival of the badge’s reply, the DoorModule will verify the BadgeID. If the ID is listed as an authorized ID in the database, the user is given the authorization to open the door.

This report shows you how to build the electronic badge system and explains how it works. We are going to talk about the requirements, design, analysis, tests and design issues of the product in detail. In addition, our reviewers give us some valuable comments. We will response their comments at the end of this report.

Nevertheless, time constraints have limited the development of the Electronic Badge System. For this ten-week project, we are going to focus on the communication between the DoorModule and the badge. Other parameters, such as database searching and management, will be ignored or simplified for this project. Also, we will explain how we arrived at the design decisions and their tradeoffs. Figure 1 shows the interaction of these two modules. The DoorModule will exchange user information with the badge and check user’s accessibility.

[image: image1.wmf]Door

Module

Reques

BadgeID

AUTH

sensor

Badge

1

2

3

4

Figure 1: Relationship between the door and the badge modules.

2. Requirement

To be able to work properly, our design should meet the requirements listed in table 1 below. In the design and analysis section, we will prove our design will meet these requirements.

Table 1: The requirements that must be met by our design.

[image: image2.wmf]Design Properties

Required Values

Maximum Power Consumption of Badge (excluding RF)

500 mW

Maximum Delay for Door Response

2 seconds

Maximum Distance from Door

3 feet

Voltage

5 V

Clock Speed

25 MHz

Code Size

20 Kbyte

Badge and Module pair

1

Minimum Distance of Two Door Module

8 feet

Sonar Fire Period

0.5 seconds

Authorization Signal High

4 seconds

Maximum Badge Used per Door Module

256

Maximum Badge Authorized at Any Time

1

3. Design

The Electronic Badge System consists of two modules, door and badge modules. Below is a detailed description of our design followed by a discussion of design tradeoffs and critical design parameters

3.1. DoorModule

A DoorModule consists of three components: an XS40 board, an RF transceiver and a Sonar-Ranging module. The XS40 board has an 8051 micro-controller, a FPGA and a SRAM. The micro-controller is the core of the DoorModule. It interacts with the other three components: sonar, RF and FPGA. The Figure 2 shows the interconnection between these components.

[image: image3.wmf]XS40

RF

FPGA

8051

AUTH

INIT

ECHO

BADGEID

REQUEST

BUSY

IE0

Door Module

RS232

(sonar)

XS40

Figure 2: Block diagram of the DoorModule.

First, the micro-controller interacts with the sonar module, which is used to detect the user intention. Then, the micro-controller communicates with the RF module to get the user information, BadgeID. Finally, the micro-controller sends the BadgeID to the FPGA, which performs lookup in the database and signals the LED on the XS40. If the user’s BadgeID is listed as an authorized BadgeID in the database, the FPGA will turn on the LED. Figure 3 below gives an overview the sequence of actions of the DoorModule as time increases

[image: image4.wmf]Badge

FPGA (

DoorModule

)

8051 (

DoorModule

)

Request +

DoorID

DoorID

+

BadgeID

Request +

BadgeID

Check

BadgeID

Sonar

INIT

ECHO

Time

Time Sequence

Figure 3: Time sequence of the Electronic Badge System.

This sequence of actions can also be represented by a state machine shown in Figure 4. Each state in the state machine corresponds to the three stages in the time sequence. In fact, this state machine represents the structure of the control software on the micro-controller, which will be discussed later.

[image: image5.wmf]Detecting User

Requesting ID

Checking ID

State Diagram for the

DoorModule

Detected user within

a specified range

Time out in

ID request

ID received

Done Checking

Figure 4: State Diagram of the DoorModule.

The following sections will provide detailed design descriptions of each component in the DoorModule.

3.1.1. Sonar

The sonar is used in order to detect user intention. It helps the micro-controller to measure the distance between the door and the user. Figure 5 shows the bean pattern from the transducer of the sonar ranging module. Notice that in figure 5, the beam pattern is stronger in the middle and weaker on both sides.

[image: image6.png]

Figure 5: Beam pattern from the transducer.

Source: Polaroid Instrument Grade Transducer.

The micro-controller interacts with the sonar module through INIT and ECHO signals. The micro-controller uses INIT to fire the sonar. When the INIT is taken high, the sonar module drives the transducer XDCR to output. Upon receiving the return signal, the sonar notifies micro-controller by setting ECHO high. Figure 6 below shows the time difference between INIT goes high and ECHO goes high is directly proportional to the distance of an object.

[image: image7.png]Vect

T
TRANSMIT
{INTERNAL} _J I l&__—_
LOW
BLNK
W
BINK Lo
INTERNAL i
BLANKING
— 238ms b
ECHO p—
Diff & distance

Figure 6: Timing diagram of sonar.

However, the sonar ranging module has an initial internal blanking time set to 2.38ms, which is equal to a distance of 1.33feet. In order to measure object closer than 1.33 feet, BINH needs to be set in order to inhibit the internal blanking period. BINH is set 0.9ms after INIT is set. This number is found by the following equation.

[image: image8.wmf]ft

ms

time

dist

/

9

.

0

*

2

=

Figure 7 shows how to connect the sonar ranging module to the micro-controller on the XS-40. The output ECHO is connected to XS40 as an external interrupt. The XS40 is set to have a falling edge trigger. So, there is an inverter in the connection of the ECHO.

[image: image9.png]P2
INTO

8051

(BOTTOM VIEW!)

Vee

Figure 7: Connection of the sonar ranging module to the micro-controller on the XS-40.

Some pull-up resistors are needed for each port, and their values are describing in the table 2. Also, A 500 picofarads capacitor is installed across the power line of the ranging module as an instantaneous drain on the power supply. The value of the pull-up resistor for INIT and BINH is different from ECHO. It is because INIT and BINT are output to the XS40 whereas ECHO is input of the XS40. We came up with these values by testing the voltage with different value of pull-up resistor.

Table 2: Pin-out of the connection.
	Name
	Sonar Ranging Module
	Resistor
	XS40

	VCC
	9
	-
	-

	INIT
	4
	1K(
	68

	BINH
	8
	1K(
	22

	ECHO
	7
	4.7K(
	12

	GND
	1
	-
	52

In addition to the above setting, some timing parameters need to be set and they are described in the figure 7.

[image: image10.png]wr
e,
e ; ;
e —

ECHO .

o Charatoisic ‘ win ‘ v ‘ wox | units
T | TV S T T =
2| T | GankionnTime oo | 2m 5
s | T | corotme B ”
§ | Tuin | ranmerr w | - -
5| s | Lowmmetor w | - I

Figure 8: Timing Diagram of ranging module control lines.

CycleTime = Tpu + TBINH + TINT_H + TINT_L

= (5 + 0.9 + 100 + 100) ms = 205.9ms

The sonar takes 0.2 seconds to do one cycle of detection. To allow the transducer to clear, we will give more time between firing sonar. If no object is detected, the sonar will be fire twice a second.
3.1.2. RF

The RF component in the DoorModule acts as a wireless link to obtain BadgeID from the badge. The hardware we use to implement this functionality is a Virtual Wire RF development board, which consists of a data radio board and a protocol board. The data radio board transmits individual bytes as RF signals and provides simple, byte-level error detection, while the protocol board implements a protocol on top of this byte-level transmission. The protocol board gets packets to send from the micro-controller through a RS-232 connection and passes them to the data radio board for RF transmission. It also assembles bytes received by the data radio board into packets and passes them to the micro-controller over RS-232. The hardware setup for this is shown in Figure 9.

[image: image11.wmf]Protocol Board

Data Board

8051

RS 232

RF Development Board

Sends byte

Packet,

ack

, and retransmit

Figure 9: RF Hardware Setup.

The protocol implemented by the protocol board specifies a packet format, and provides broadcast as well as node-to-node transmission of packets, with each node being an RF board and having a protocol address from one through fifteen. In our system, the DoorModule will always initiate the message exchange. Since it must be able to determine the node address of the badge to send request to, regardless of which particular badge may be, all badges need to have the same address. We have arbitrarily chosen this address to be one, leaving addresses two through fifteen for DoorModules. This design also has the benefit that a DoorModule will not waste time listening to packets sent by other DoorModules to a badge, because these packets will have a destination address of one, which is different from the DoorModule’s address and tells the protocol board in the DoorModule to ignore them.

The protocol board also provides acknowledgement and retransmission of packets. Once it gets a properly formatted packet from the micro-controller, it will send the packet and wait for an ACK packet from the destination node. If the first transmission is not acknowledged by the destination node, it will retry until it succeeds or up to a total of eight attempts. If the transmission is successful, the ACK will be passed onto the micro-controller. Otherwise a NACK message is passed on to the micro-controller.

The DoorModule and the Badge cooperate in the user authentication process by wirelessly exchanging request and response messages. The request message contains a specified number, which is the request code, to tell the badge that this is a request. Similarly, the response will contain a number to indicate that the message type is response, and will have the ID of the badge as the second field. By building this message format on top of the RF protocol and packet format, we can take advantage of the acknowledgement and retransmission mechanisms of the protocol and make our message exchange more reliable. Figure 10 shows the fields in the request and response messages, as well as the format of the RF packets that will encapsulate them.

[image: image12.wmf]Protocol Board requires:

TO/FROM

Packet #

Packet Size

Data Bytes

We add:

REQUEST

RESPONSE

BadgeID

Request from Door

Response from Badge

Figure 10: RF message format.

3.1.3. FPGA

We use the FPGA to synthesize ID-Checker module. ID-Checker module is a module that is responsible for checking the authorization status of a user. This module does the checking by indexing the database using the BadgeID received from the micro-controller. The database that this module has is just a lookup table of all possible BadgeIDs that may be handed out by the micro-controller. If the BadgeID used to index the database is listed in the database as an authorized BadgeID, the user that has this BadgeID (i.e. carries the Badge with the BadgeID encoded to it) is authorized to open the door to which the DoorModule is installed; otherwise, the user is not authorized to open the door.

ID-Checker module is also responsible for controlling the authorization signal that it generates. The authorization signal is a signal that tells the door to open itself because an authorized user is in front of the door and, possibly, wishes to enter the room. The ID-Checker module will set the authorization signal to high for four seconds if the user is authorized; otherwise, it will keep the authorization signal low. We choose this four-second interval because of a reason that we will discuss in the Critical-Design-Parameter section.

There are some design limitations that we need to address in order to understand the design of the ID-Checker module better. Some critical limitations are described next.

Authorization Signal

When we design the ID-Checker module, we do not want to get into the details of a specific door mechanism. This is because we want the Electronic Badge System to work regardless of what type of door it is installed to. We want the system to behave as a wireless security device that checks the authorization status of a user and to let the door knows if the user is authorized to open the door.

In practice, the Electronic Badge System will work together with any specific door mechanism in such a way that it is still portable enough so that it will work with every type of door available in the market. The way we are going to achieve this portability is by not using the authorization signal generated by the ID-Checker module to open the door directly. Instead, we are going to use the authorization signal to let the door knows that there is an authorized user who, possibly, wishes to enter the room. The door can, therefore, use the authorization signal as a clue to open itself, allowing the user to pass.

Safety Related Issues

Since we are not dealing with a specific type of door, we are assuming that the door mechanism with which the Electronic Badge System interacts has taken into the consideration the safety of users who use the door. For example, a sliding-door safety mechanism needs to detect if someone is still on the way before the sliding door closes.

We need to let the door mechanism takes care of the safety issues in order to achieve the system portability that we want. Therefore, we will not try to handle these issues directly in the design of the Electronic Badge System.

ID-Checker Module

ID-Checker module has four inputs and two outputs. One of the inputs, BADGEID, is an 8-bit bus containing the BadgeID supplied by the micro-controller. Each of the input and output will be discussed in more detail next.

Inputs of ID-Checker Module

The inputs of the ID-Checker module are BADGEID, REQUEST, RESET, and CLK. Below is a short description of each input.

BADGEID is an 8-bit bus that represents the BadgeID, which is just an 8-bit unique number that is stored in a Badge carried by a user. The micro-controller will extract the BadgeID from the Badge and give it to the ID-Checker module to determine whether or not the user who carries the Badge is authorized to open the door. To give the BadgeID to the ID-Checker module, the micro-controller will put it on this bus so that the ID-Checker module can grab it.

REQUEST is a signal that comes from the micro-controller. The micro-controller uses this signal to let the ID-Checker module knows that a new BadgeID is available to be processed. In doing so, the micro-controller will set this signal to high.

RESET is a signal that is used to initialize the ID-Checker module to a known and appropriate state. This signal also comes from the micro-controller. The micro-controller will set this signal high when it starts for the first time.

CLK is a signal of the system clock. We are using a clock with a frequency of 25 MHz. We choose this frequency because we can obtain it easily from the original master clock of 100 MHz on XS40 board. It also allows the micro-controller to generate a serial baud rate that is close to 19.2 kbps, which is needed to interface with the RF module.

Outputs of ID-Checker Module

The outputs of the ID-Checker module are BUSY and AUTHORIZE. Below is a short description of each output.

BUSY is a signal that is used by the ID-Checker module to let the micro-controller knows that the module is busy processing the given BadgeID. We will discuss about how BUSY signal works when we talk about ID-Checker’s finite state machine in the ID-Checker’s Finite-State-Machine section.

AUTHORIZE is a signal that is used by the ID-Checker module to let the door mechanism knows that the user that carries the Badge in front of the door is authorized to open the door. The door, therefore, should do everything that needs to be done to let the user pass.

Each of the above inputs and outputs is mapped to an IO pin of the FPGA. The following table summarizes this mapping.
Table 3: Mapping of signals and pin numbers.

[image: image13.wmf]Signals

Pin Numbers

BADGEID[7]

67

BADGEID[6]

66

BADGEID[5]

70

BADGEID[4]

77

BADGEID[3]

6

BADGEID[2]

9

BADGEID[1]

8

BADGEID[0]

7

REQUEST

48

RESET

36

CLK

13

BUSY

47

AUTHORIZE

44

Input

Output

Inside, the ID-Checker module comprises of five sub-modules: USERDB, COUNTER32, COMPARATOR32, CONSTANT_AUTH, and CONTROL. In addition, it also contains some registers that are used to handle asynchronous inputs from the micro-controller. Figure 11 below shows all sub-modules and registers and how they interact with each other. Table 4 gives an overview of all input and output ports of each sub-module that is followed by a detail description of each sub-module.

[image: image14.wmf]

Figure 11: Sub-modules inside the ID-Checker module and interaction among them.

Table 4: I/O of each sub-module in the ID-Checker.

[image: image15.wmf]Sub-Module

Type

Signal

Input

BADGEID[7:0]

Output

DBVALUE

RESET

ENABLE

CLK

Output

OUT[31:0]

A[31:0]

B[31:0]

Output

EQUAL

CONSTANT

Output

OUT[31:0]

DBVALUE

REQUEST

RESET

CLK

BUSY

AUTHORIZE

Input

Input

Input

Ouput

USERDB

COUNTER32

COMPARATOR32

CONTROL

USERDB Sub-Module

USERDB is a sub-module that contains a list of BadgeIDs. The ID-Checker module uses the BadgeID supplied by the micro-controller to index this list and see whether or not the BadgeID is listed as an authorized BadgeID. If it is listed as an authorized BadgeID, the user whose Badge has the BadgeID is authorized to open the door. The USERDB sub-module has one input, BADGEID, and one output signal, DBVALUE.

BADGEID is an 8-bit bus that contains the BadgeID from the micro-controller. This BadgeID is the one that is used to index the BadgeID list in the database. On the other hand, the DBVALUE is a signal containing the authorization status that corresponds to the BadgeID being used to index the BadgeID list. If DBVALUE is high (asserted), it means that the user whose BadgeID is equals to the one in BADGEID bus is authorized to open the door; otherwise, the user is not authorized to open it.

There are several ways to design this sub-module as discussed in the Design-Tradeoffs section below. Currently, this sub-module is implemented using a Read Only Memory (ROM). The ROM is used as a Look-Up Table (LUT). As the index to the LUT, we use the BadgeID obtained from the micro-controller.

COUNTER32 Sub-Module

COUNTER32 sub-module (together with COMPARATOR32 sub-module) is used to keep the authorization (AUTHORIZE) signal high for a certain time T. We can adjust the value of T to take into the consideration the different types of door being used with the Electronic Badge System. The actual value of T depends on the type of door being used. Currently, we are using the value of 100,000,000. This value corresponds to four seconds interval given that the counter is incremented every clock cycle and the Electronic Badge System uses a 25-MHz clock. (The reason of choosing this value will be discussed in the Critical-Design-Parameter section.)

The purpose of keeping the authorization signal high for a certain period of time is to give the door mechanism a chance to do everything necessary to allow the authorized user to pass, including opening the door itself. This is a necessary step since we do not and should not have control of the mechanism.

The COUNTER32 sub-module has four inputs and one output. RESET, EQUAL, ENABLE and CLK are the inputs whereas OUT is the output. We will discuss each input and output in more detail below.

CLEAR is a signal that is used to reset the counter to zero. This signal will be high when the system starts for the first time or whenever we want to reset the value of the counter to zero. As long as this signal is high, the value of the counter (OUT) will be zero (even though the ENABLE signal, as described below, is high). Currently, we use the AUTHORIZE signal from the CONTROL sub-module to drive the CLEAR signal. The reason of doing this will be explained in the How-ID-Checker-Module-Works section.

EQUAL is a signal that comes from the COMPARATOR32 sub-module. This signal is high when the value of the counter that is represented by OUT (as described below) is equal to the predefined non-zero constant used by the COMPARATOR32 sub-module. (The COMPARATOR32-Sub-Module section below will discuss more about this signal in more detail, whereas the CONSTANT_AUTH-Sub-Module section below will discuss more about the predefined non-zero constant used by the COMPARATOR32 sub-module.)

ENABLE is a signal that is used to allow the counter to run. As mentioned above, if the CLEAR signal is high, the value of the counter (OUT) will stay at zero. Since we want to count how long the authorization (AUTHORIZE) signal is high, we use the AUTHORIZE signal to enable the counter. If the AUTHORIZE signal is high, the counter will run, provided that the CLEAR signal is low; otherwise, it will not. Since the counter runs if the AUTHORIZE signal is high, we know for sure how long the signal is high. By changing the value of the constant used by the COMPARATOR32 sub-module described below, we can customize how long the authorization signal is high.

CLK is the signal of the system clock. As described in ID-Checker module section above, we are using a 25-MHz clock because it can be obtained easily from the original 100-MHz master clock on the XS40 board. It also allows the micro-controller to generate a serial baud rate that is close to 19.2 kbps, which is needed to interface with the RF module.

OUT is an output bus containing the current value of the counter. The value of the counter will not change if the RESET signal is high, or if the ENABLE signal is low. COMPARATOR32 sub-module uses this bus as one of its input.

COMPARATOR32 Sub-Module

COMPARATOR32 sub-module (together with COUNTER32 sub-module) is used to keep the authorization (AUTHORIZE) signal high for a certain time T. The job of this sub-module is to compare the current value of the COUNTER32 sub-module described above with the predefined non-zero constant described in the CONSTANT_AUTH-Sub-Module section below. This constant can be customized to take into the consideration the different types of door mechanism.

This sub-module has two inputs, A and B, and one output, EQUAL. A and B are 32-bit input buses containing the values to be compared. While A contains the current value of the counter, B contains the value of the predefined non-zero constant described in the CONSTANT_AUTH-Sub-Module section below. If A and B are equal, then the EQUAL signal, which is an output signal, is set to high. The counter uses the EQUAL signal as one of its input.

CONSTANT_AUTH Sub-Module

The CONSTANT_AUTH sub-module is just a predefined non-zero constant used by the COMPARATOR32 sub-module. This constant is designed separately so that it is easy to customize and gives a better modularity. The only output that this sub-module has is OUT, which is a 32-bit but. OUT contains the value of the constant itself. Currently, we set this constant to 100,000,000. The reason for choosing 100,000,000 will be discussed in the Critical-Design-Parameter section.

CONTROL Sub-Module

This sub-module, as suggested by its name, controls other sub-modules. It is also responsible for interfacing with the micro-controller. This module has five inputs and two outputs. The inputs are DBVALUE, REQUEST, EQUAL, RESET and CLK; whereas the outputs are BUSY and AUTHORIZE. Each input and output will be discussed in more detail below.

DBVALUE is a signal that comes from the USERDB sub-module. It contains the authorization status of the user being verified. This signal will be ignored most of the time unless the REQUEST signal, which is described below, is high. This is because DBVALUE is guaranteed to be valid if and only if the REQUEST signal is high.

REQUEST is a signal that comes from the micro-controller. It is used to let the ID-Checker module knows that a new BadgeID is available to be processed. While the REQUEST signal is high, the micro-controller is not expected to change the value of the BadgeID that resides in the BADGEID bus. This is part of the interface agreed by both the micro-controller and the ID-Checker module (FPGA).

EQUAL is a signal that comes from the COMPARATOR32 sub-module. It is used to let the CONTROL sub-module knows whether or not the authorization signal is already high for as long as T time interval. This time interval depends on the predefined non-zero constant used by the COMPARATOR32 sub-module. Currently, we choose T to be four seconds. The reason of choosing this time interval will be explained in the Critical-Design-Parameter section below.

RESET is a signal that is used to initialize the ID-Checker module to a known and appropriate state when it runs for the first time. The CONTROL sub-module uses this signal to move to the WAIT_ID state as explained in the ID-Checker’s-Finite-State-Machine section below.

CLK is just the master clock signal on XS40 board as described in ID-Checker module and COUNTER32 sub-module sections above.

BUSY is one of the output signals of CONTROL sub-module. It is also one of the output signals of the ID-Checker module. It is generated to let the micro-controller knows that the module is processing the BadgeID given by the micro-controller. Any modification to the BadgeID that resides in BADGEID bus is not expected while BUSY signal is high.

AUTHORIZE is the other output signal of CONTROL sub-module. As with the BUSY signal above, AUTHORIZE signal is also an output signal of the ID-Checker module. It is used to tell the door mechanism that the user that carries the Badge whose BadgeID is being processed is authorized to open the door. Upon seeing this signal high, the door mechanism does everything necessary to let the user pass safely.

How the ID-Checker Module Works

As a whole, the ID-Checker module works as follow:

The micro-controller gets a BadgeID to be verified from extracting the RF message. Then, the micro-controller will assert the REQUEST signal to let the ID-Checker module (specifically the CONTROL sub-module) knows that a new BadgeID is available in BADGEID input bus. After that, the CONTROL sub-module asserts its BUSY signal to let the micro-controller knows that it is processing the BadgeID given. No modification to the BadgeID provided is expected at this time.

The BadgeID will be used as an index to the BadgeID list in the USERDB sub-module. From here, the USERDB sub-module will output the authorization status of the corresponding BadgeID. This status is then used as input by the CONTROL sub-module. If the status signal is high (the user is authorized), the CONTROL sub-module will assert the AUTHORIZE signal; otherwise, it will keep the AUTHORIZE signal low.

If the user is authorized (the authorization signal is high), the counter will be enabled since we use the AUTHORIZED signal to enable the counter. At this time the counter will run every clock cycle. At the same time, the comparator keeps comparing the current value of the counter with a predefined non-zero constant. If the value of the counter is equal the value of the constant, then, the comparator will assert the EQUAL signal, which in turn will hold the value of the counter (i.e. keep the counter value the same). Since the COUNTER32 and CONTROL sub-modules use the EQUAL signal, we need to make sure that both sub-modules are able to recognize the rising edge of the signal. To do this, it is necessary to hold the value of the counter so that the comparator keeps comparing the same counter value, which is at this time equal to the value of the predefined non-zero constant, and asserting the EQUAL signal. When the CONTROL sub-module is successfully recognizing the rising edge of the EQUAL signal, it will lower the AUTHORIZE signal. Because at this point we want to lower the EQUAL signal, we use this AUTHORIZE signal to reset the counter to zero (as described in COUNTER32 Sub-Module section), and therefore, the comparator will compare two different values (a zero and a predefined non-zero constants) and lower the EQUAL signal.

At this point, the whole process starts all over again.

ID-Checker’s Finite State Machine

To do all the processes described in the How-ID-Checker-Module-Works section above, the CONTROL sub-module inside the ID-Checker module maintains a Finite State Machine (FSM). The FSM has four valid states as shown in Figure 12 below.
[image: image16.png]REQUEST

IREQUEST

IREQUEST

WAIT_ID

BUSY =0
AUTHORIZE = 0

CLEAR_REG

1DBVALUE

1EQUAL

AUTHORIZE

CHECK_ID

BUSY=1
AUTHORIZE = 0

DBVALUE

Figure 12: The finite state machine maintained by the CONTROL sub-module.

As shown in the figure above, the RESET signal will set the initial state to the WAIT_ID state. WAIT_ID state is a state where the CONTROL sub-module (and therefore, the ID-Checker module) waits for the REQUEST signal to be high. This means that the value of BADGEID is currently invalid and should be ignored. Furthermore, as long as the REQUEST signal is low, the CONTROL sub-module stays in this state. The outputs of this state are BUSY = 0 and AUTHORIZE = 0.

Once the REQUEST signal is high, the CONTROL sub-module will change state to CHECK_ID state. In this state, the sub-module checks if the user is authorized by indexing the database in USERDB sub-module using the BadgeID from the micro-controller. Also, it will assert the BUSY signal while keeping the AUTHORIZE signal low. Then, still in this state, the CONTROL sub-module will wait for the authorization status (DBVALUE signal) from the USERDB sub-module. If DBVALUE is high, the CONTROL sub-module will change state to AUTHORIZE state, meaning that the authorization is granted. On the other hand, if DBVALUE is low, then the sub-module goes to the CLEAR_REG state. (CLEAR_REG state will be described in more detail shortly below.)

In the AUTHORIZED state, the BUSY signal is still high. This is intentional since the CONTROL sub-module (and therefore, ID-Checker module) is not ready to process another BadgeID yet. Also in this state, the CONTROL sub-module asserts the AUTHORIZE signal to let the door mechanism knows that the user has been granted an authorization. By asserting the AUTHORIZE signal, the CONTROL sub-module starts the counter. At the same time, the comparator compares its value against a predefined non-zero constant. If both values are the same, then the comparator will assert EQUAL signal.

The transition out of AUTHORIZE state is determined by the EQUAL signal from the COMPARATOR32 sub-module. If the EQUAL signal is low, the CONTROL sub-module stays in AUTHORIZE state. Otherwise, it will move to the CLEAR_REG state. Since the comparator, which compares the current value of the counter against a predefined non-zero constant, generates the EQUAL signal, we can control easily how long we want to assert the authorization signal. (With the current design, the authorization signal will be asserted as long as the constant value C + 1 clock cycle.)

The CLEAR_REG state is the final state of the CONTROL sub-module that is used to ignore the value of the registers. Ignoring the value of the registers at this time is a necessary thing to do. Since we are using two registers back to back for every asynchronous input signal, it is possible that an input signal from the micro-controller has already changed, but the finite state machine thinks that it is still the same due to the value of the registers. Therefore, we need this state to ignore this invalid signal value from the registers.

As a simple example of what might happen related to this, just consider that there is no CLEAR_REG state. The transition from AUTHORIZE state goes like this: If the EQUAL signal is high, then we moves to the WAIT_ID state; otherwise, we stay in the same state. We can also assume that the ID-Checker module just finish checking a BadgeID, and the CONTROL sub-module is in WAIT_ID state. At this time, the micro-controller just sets the REQUEST signal to low. Even though the micro-controller already sets the REQUEST signal to low, because of the registers, the REQUEST signal that is read by the FSM is still high. Since the FSM at this moment is in WAIT_ID state and waiting for REQUEST signal to go high, the FSM will transition to CHECK_ID state mistakenly. It will then think that the BadgeID in the BADGEID bus is valid and try to check the user authorization. If the value of the BADGEID bus happened to be listed as an authorized BadgeID, then the system will give a false authorization signal and the door will open.

Once the FSM is in the CLEAR_REG state, it will wait until the REQUEST signal read in by the FSM to go low. If the signal is still high, the FSM will stay in this state.

3.1.4. Micro-controller

The purpose of the micro-controller is to coordinate the actions of all the hardware parts in the DoorModule. As we mentioned earlier, the structure of the software on the micro-controller closely follows the state machine shown in Figure 4. There are three functions corresponding to the three states: Sonar_Task for DETECTING_USER state, RF_Task for REQUESTING_ID state, and FPGA_Task for CHECKING_ID state.

Sonar_Task

Just as each state in the state machine represents some operations by some hardware components, each of the three task functions controls or facilitates the operation of these hardware components. Sonar_Task controls the sonar to detect any user within a distance threshold. As we discussed in the earlier section on sonar, the interaction between the micro-controller and the sonar is mainly through the INIT and ECHO wires. Thus the job of Sonar_Task is to raise the INIT wire to fire the sonar periodically, and measure the time elapsed from INIT going high to ECHO going high.

RF_Task

RF_Task interfaces with the RF protocol board to send requests and receive responses. Its jobs include: formatting request messages into RF packets and sending them, retrieving response messages from received RF packets, and handling ACK/NACK messages and timeouts at the RF protocol or message exchange level.

RF_Task receives packets into a buffer array, in_buffer, and sends from another buffer, out_buffer. When sending a request, it creates a proper RF message in the out_buffer by adding the TO/FROM addresses, packet number (recycling 1 through 7), and packet size to the request message. The packet is then passed to the protocol board for transmission. When receiving reply, it picks out the BadgeID field from the packet in in_buffer.

RF_Task aborts message exchange when it receives a NACK. If it gets an ACK for a packet it sent, it will wait for the reply from the badge. At the same time, a timeout counter is started, so that if the reply does not arrive due to some error, RF_Task will abort instead of waiting indefinitely for the reply.

FPGA_Task

FPGA_Task takes the BadgeID obtained in RF_Task and sends them to the FPGA for user database checking. It interfaces with the FPGA through Port 1 on the micro-controller, and the REQUEST and BUSY signals as discussed in the section on FPGA. Upon startup, FPGA_Task first puts the 8-bit BadgeID on the 8 pins on Port 1 and then asserts REQUEST, asking the FPGA to read the new BadgeID and process it. As the FPGA gets the BadgeID and processes it, it keeps the BUSY signal high until it is done processing. Meanwhile, FPGA_Task just waits until BUSY goes low. Since the BUSY signal is connected to one of the external interrupt pins on the micro-controller, a falling edge in BUSY will trigger an interrupt on the microconotroller, telling it that the FPGA is done processing. At this point the FPGA_Task is finished, and the DoorModule will switch back to the DETECTING_USER state to run Sonar_Task. A timing diagram showing theses signals, for both the unauthorized and the authorized cases, is show in Figure 14.

[image: image17.wmf]CLK

BadgeID

REQUEST

BUSY

AUTH

Not Authorized

Authorized

Figure 13: Timing Diagram for Passing BadgeID to FPGA.

Execution of Task Functions
Just as the state machine can only be in one of the three states, the micro-controller will only execute one of the three task functions at a given time and only switch to the next until the current one has finished. Therefore, the task functions will not compete for CPU processing time on the micro-controller, and our implementation of the software can be simpler, because we do not have to worry about time-consuming operations in one task taking up too much time and delays some time-sensitive operations in another task. The fact that the task functions do not run concurrently also allows timers and other hardware resources on the micro-controller to be reused by different tasks. For example, timer 0 can be set to generate overflows every 0.1 ms in Sonar_Task but every 10 ms in RF_Task.
3.2. Badge

The hardware for the badge is almost identical to the RF portion of the DoorModule. It consists of an Atmel 8051 micro-controller and a RF transceiver. The software is also similar in the use of in_buffer and out_buffer, and handling of timeouts and ACK/NACK. The main difference is that it does not initiate a message exchange as the code on the DoorModule does. Instead, it waits for a valid request before replying with a packet containing the BadgeID.

3.3. Design Tradeoffs

Due to the time constraints, we will focus on the interaction between the badge and the DoorModule. Other parameters will be ignored or simplified for this project. Below is the tradeoff of our design decisions.

3.3.1. RF vs. Infrared

To communicate between the badge and the DoorModule, we have chosen RF instead of infrared. It is because infrared requires user interaction with the receiver. The Infrared sender must aim towards the sensor on the receiver side. Moreover, infrared cannot be detected if it is blocked. So, RF is a better choice since it does not require aiming and it can be detected if it is blocked. However, the tradeoff of using RF is losing localization due to the large RF range. We are going to discuss this problem in detail in the design issues section.

3.3.2. Database

The database for the authorized-user-ID can be implemented in many ways. Some of them include:

· Using a real database (such as an SQL server on a PC) over an Ethernet.

· Using a RAM so that the ID can be stored and read by the system.

· Using a ROM that is configured as a lookup table.

Currently, we implemented the database using a ROM that is configured as a lookup table (LUT). The advantage of this database scheme is that it is simple and executed really fast. Since the database is basically an LUT, we can get the result in just one clock cycle.

Since we are focusing on the wireless communication part of the system, we do not want to complicate the whole system by using a complex database scheme, especially if it is across an Ethernet. We figure that our unfamiliarity with the Ethernet will give us a hard time to set up a database across the Ethernet.

Last, we do not use the RAM that is available on XS40 board because we concern with the concurrent RAM access of the micro-controller and the FPGA. By not using the RAM, we avoid the problems associated with this situation.

3.3.3. 32-Bit Counter and Comparator in FPGA

We use 32 bits for the counter and the comparator in FPGA because we want to make the system more flexible by allowing more constants (from 0 to 232) to be defined for the CONSTANT sub-module. By using 32 bits, we need more space for the ID-CHECKER module. Since space is not our concern, we are willing to trade space requirement with the portability of the system. We will talk more on the space utilization of FPGA in the Analysis section.

3.3.4. FPGA vs. Micro-controller for Checking User

Instead of using the micro-controller to check the authorization status of a user and to generate the authorization signal, we use an FPGA. We decide to do this because we are considering several extensions as described next.

We wish to use a real database over an Ethernet to store the list of authorized-user IDs. In this case, the FPGA (together with the micro-controller) will be used to interface our system with the Ethernet and the database. We are thinking of using an SQL server on a PC and let the micro-controller talks with the PC over the Ethernet.

We want the Electronic Badge System to be able to support more users in the future. We make this task easier by using an FPGA to handle a wider bandwidth for the BadgeID that is being used. We are thinking of extending the BadgeID to more than eight bits. The actual bandwidth is determined based on the total number of users we want to support.

By using an FPGA to check the authorization status of a user and to generate the authorization signal, we also give a better modularity for the Electronic Badge System. We let the micro-controller takes care of the sonar and the RF units while the FPGA takes care of the authorization checking of the user. In other words, we decrease the workload of the micro-controller.

3.4. Critical Design Parameters

To have the Electronic Badge System working, we need to be careful when we pick the parameters. In this section, we are going to discuss some parameters of our design

3.4.1. Distance Threshold for Detecting User with the Sonar

The sonar determines if a user wants to open a door by checking if there is an object within a specified distance from the door. This specified distance should be small enough so that users far away from the door do not trigger a BadgeID request, and that a user standing between two near by doors does not open both doors. On the other hand, it should not be too small so that the user has to be almost touching the door in order to open it. Furthermore, the ECHO signal is reliable only after a specific amount of time (the internal blinking interval), which places a minimum on the distance between the sonar and the detected object. After several experiments, we picked a range of three feet. The distance range for the sonar to detect an object is six inches to three feet.

3.4.2. Time out for Messages between the Badge and the DoorModule

To ensure that the DoorModule does not stall forever after sending out a request for BadgeID but never getting a reply, perhaps because the battery on the badge runs out, it will time out after a certain amount of time. This time out should be long enough for normal messages to be received. We choose a timeout of 0.5 seconds. (John, please correct this if it’s not correct. The comment from CSE477 is “how long is this?” Thanks)
3.4.3. Four-Second Interval for the Authorization Signal

We choose to use four-second interval for the authorization signal because we are assuming that our Electronic Badge System is being used with the door of the Hardware Lab. This interval is also suggested by our reviewers based on their experiment on the card reader at the lab door. One thing that we need to stress out is that this constant is not absolute. This means that we can change it so that our Electronic Badge System can work best with any door mechanism it is installed to.

4. Parts

For this project, we are using the following parts.

Table 5: Parts needed for the Electronic Badge System.

	
	Parts
	Manufacturer
	Quantity
	Part Number

	

Hardware

	XS-40 Board
	Xilinx
	1
	XS-40

	
	8051 Micro-controller
	Atmel
	1
	AT89C55-33PC

	
	VirtualWire RF development kit
	RF Monolithics
	-
	DR1004-DK

	
	Sonar Ranging Kit
	Polaroid
	-
	R11-6500

	
	RS-232 Transceiver
	Dallas Semiconductor
	2
	DS275

	
	4.7 K(Resistor
	-
	1
	-

	
	1K(Resisitor
	-
	2
	-

	
	330(Resistor
	-
	1
	-

	
	Capacitor
	-
	1
	-

	
	One Light-Emitting Diode (LED)
	-
	1
	-

	
Software

	XS tools
	-
	-
	-

	
	Xilinx Foundation tools
	-
	-
	-

	
	Keil Vision 2 (evaluation version)
	-
	-
	-

5. Analysis

With the design we discussed above, we think our design will meet the requirements. Below is a discussion of some details that we have thought about.

One sonar

In the DoorModule, we used one sonar to detect user intention. As shown in figure 4, the beam pattern send from the transducer of the sonar ranging module is stronger in the perpendicular direction. Therefore, the sonar is able to detect the approaching user who is intended to open the door.

Response time of the system

From the calculation we did in the design section, sonar needs a maximum of 0.2 second to detect a user within a range of 6 inches and 3 feet. We decided to fire sonar every 0.5 second. If the sonar misses a user in the first detection, it takes another 0.2 seconds to detect the user. So, the worst case of detecting a user is 0.7 seconds.

On the other hand, the response time of the RF component is not so easily determined. Under normal circumstances, packets will get through on the first transmission. However, under strong interference, they can take up to eight retries with up to 360ms of random delay in between retries, or a total of almost 3 seconds. Or even worse, the packets may not even get through to the receiver at all. But since we assume these to be rare cases, we will just analyze the normal case.

We know the RS-232 connection between micro-controller and RF board is set at 19.2 kbps, the RF link transmits at 22.5 kbps, and the packet size of our messages is at most five bytes, so we estimate the time to send 1 packet to be about 7.4 ms. Since a message exchange is two way, and there needs to be an ACK for every packet sent, it will take approximately 4*7.4 ms, or 29.6 ms for the whole exchange.

The FPGA can finish its task in about four clock cycles at 25MHz, which is about 16 microseconds. Therefore, the total response time for the normal case should be around 1 second. Our design meets the requirement of a maximum delay of 2 seconds for response.

Reliable Transmission

If both of the DoorModule and the badge are working, we assume that the exchange of messages between them is reliable. This assumption is based on the fact that the RF development kit provides a protocol board which guarantees reliable, error free transmission at the packet level.

Badge failure will not break the DoorModule.

If the DoorModule sends out an ID request, but the badge is broken and fails to respond, the DoorModule will not wait forever because of the badge failure. It is because the RF will time-out the non-reply packet after eight retries. (When this happen, the DoorModule will time out the request signal and move back to the Detecting_User state.

Correct Transmission

If there are several DoorModules within the RF transmission range of the badge, and a user with the right permission is standing near one of them, only the closest DoorModule should response. First of all, notice that the minimum distance between two DoorModule is eight feet. Only the sonar at the closest DoorModule should detect the user and send out request packet to the badge. Next, as the badge receives this request, it will reply with a packet containing both its own RF address and the RF address of the requesting DoorModule. While all the doors nearby will receive this ID reply, only the requesting door will response because of the from/to address and its current state, Requesting_ID.

Code Size

The size of the byte code for the DoorModule is approximately 1300 bytes, which is far less than the 32KB SRAM available on the XS-40 board. The size of the byte code for the badge is approximately 362 bytes, which will fit in the 20KB code memory on the Atmel 8051. So, our code will fit on both the DoorModule and the badge.

Power Supply

The DoorModule will run off the power supply for the breadboard, the adapter for the XS-40, and the batteries on the RF development board on the door side. The Badge will operate from the three 1.5V batteries on the RF development board on the badge side. We will power the Atmel 8051 on the badge from the same three batteries so that the user does not have to carry extra batteries. We tested it and it works perfectly.

FPGA utilization

Currently, we also limit the number of users that can be supported by one DoorModule to 256 users. Since right now we are using only about 30 to 35 percents of the Configurable Logic Block (CLB) and 80 to 85 percents of IO block of the FPGA, we can increase this number by implementing a bigger ROM.

Authorization period
With the current design, we use a four-second interval for the authorization signal with a reason explained in the Critical-Design-Parameter section above. To ensure the portability of our Electronic Badge System, we can change this interval by changing the predefined non-zero constant used by COMPARATOR32 sub-module.

Only one BadgeID is processed at a time
Since the FPGA sets the BUSY signal whenever it is busy processing a BadgeID, and the micro-controller will not send another BadgeID to be processed, we have guaranteed that only one BadgeID is being processed at any time. This will make sure that there is no BadgeID to be dropped or ignored, and there is no invalid BadgeID to be processed.
6. Test Plan

Testing on each component is an important step to find the hidden bug. In this section, we are going to describe how are we going to test each component.

6.1. Sonar

We will test the sonar ranging functionality of the DoorModule by the logic analyzer. By looking at the waveform, we can find out if the sonar ranging module is not working. To test our Sonar_task, we will display the amount of time for the sonar takes to receive the echo on the monitor of a PC. The PC will be connected to the DoorModule through the serial port on the micro-controller. Figure 15 shows the testing on sonar.

[image: image18.wmf]8051

Sonar

Part of Door Module

INIT

Testing Sonar

uC

= micro

-

controller

RF = radio

-

frequency transceiver

Ext = external interrupt pin

ECHO

ext

I/O pin

RS 232

Figure 14: Testing sonar.

6.2. RF link

We will test the RF communication link by sending messages between the badge and the RF transceiver in the DoorModule. The DoorModule can output the obtained BadgeID to its output pins, which can then be read out using a logic analyzer. Figure 16 shows how we are going to test the RF links.

[image: image19.wmf]uC

RF

Logic

analyzer

RS

-

232

I/O pins on

uC

Testing RF Link

uC

= micro

-

controller

RF = radio

-

frequency transceiver

uC

RF

RS

-

232

Badge

Part of Door Module

Figure 15: Testing RF link.

6.3. User DB checking

FPGA: We will start by doing software simulations on the design with the Xilinx Tools. Next, we will simulate the BadgeIDs received from the micro-controller by using a switch. Also, we will wire the request signal to either VDD or GROUND. The purpose is to make the FPGA test independent from other modules. Figure 17 shows the testing on userID checking unit.

[image: image20.wmf]FPGA

switches

ID

request

LED

open

Testing

UserID

Checking Unit

Figure 16: Testing UserID checking unit.

7. Design Issues

During our design, we identify several potential problems. The following describes each potential problem in turn.

7.1. RF Range

Although the RF module we are using has low power, its range is still too large for our system. Some of the scenarios in which this can be a problem include the following.

One Badge with Two Doors on Badge Side of View

When a badge sends out its ID to open a door using RF, all doors within the range of RF will be able to receive this ID. If the badge has the right permission to more than one of these doors, they will all open upon receiving and verifying this BadgeID. This is undesirable because the user usually only wants to open one door at a time. Figure 18 illustrates this scenario.

[image: image21.wmf]Problem 1: One Badge and Two Doors

Door 1

Door 2

BadgeID

3 feet

3 feet

Door Module

Door Module

Figure 17: One badge and two doors problem on the badge side of view.

We can work around this problem using the sonar ranging module and the messaging protocol between the badge and the DoorModule. As we mentioned in the Design section, the sonar ranging module will detect a user standing close to the door. The DoorModule will transition into the Requesting ID state and receive ID from the badge only if a user is detected. Assuming only the sonar module at the door closest to the user detects his/her presence, only that door will be in the Requesting ID state to receive the ID from the badge.

The inclusion of the DoorID in the messages between the door and the badge helps to solve the problem even if more than one door is in the Requesting ID state. Since each badge reply message also includes the ID of the requesting door, each door can decide whether to verify this BadgeID by checking if the DoorID in the message matches its own.

One Door and Two Badges on Door Side of View

The problem with one door and two badges on the door side of view is similar to the previous one. The idea is illustrated in figure 19.

[image: image22.wmf]Problem 2: One Door and Two Badges Revisit

Door 1

Door 2

Request

Request

3 feet

3 feet

Door Module

Door Module

Figure 18: One badge and two doors problem on the door side of view.

.

In this case, both doors are sending their Requests, which are DoorID. In theory, the badge may able to listen to both messages due to the large RF range. As we discuss in the requirement section, the DoorModules should separated by at least eight feet, and the sonar range is limited to three feet. With these requirements, the badge should read the DoorID of the closest door.

7.2. Baud Rate of the Serial Port on the Micro-controller

The baud rate of the RS-232 port on the RF module is fixed at 19.2 kbps. The 8051 micro-controller should set its RS-232 port to the same rate to communicate reliably. However, using the 25 MHz clock we have from XS-40 and the integer counter on the 8051, the closest baud rate we can obtain is 18601 bps, which is over 3 percent slower than the required rate of 19.2 kbps. While we have not had problems when testing the RS-232 on the 8051 with a PC, we are not certain that the RF module will tolerate this margin of error. If we do have problems connecting the 8051 and the RF module because of this difference in baud rate, we will consider using an external clock for the 8051 controller. The external clock will likely have a frequency of 11.0592 MHz, because it can help generate a baud rate of exactly 19.2 kbps with the integer counter on the 8051.

7.3. Asynchronous Interface Between the Micro-controller and the FPGA

There are two situations in which the metastability problem can happen. First, it can happen if the raising edge of the FPGA’s clock is about the same time as the rising/falling edge of the Request signal coming from the micro-controller. In this case, we will have a metastability problem on the FPGA part. The FPGA will need more time to decide if the Request signal is high (logic one) or low (logic zero).

The second situation occurs if the rising edge of micro-controller’s clock is about the same time as the rising/falling edge of the Busy signal coming from the FPGA. If this happens, the micro-controller will need more time to decide whether the Busy signal is a logic one or a logic zero.

Since we are using the clock frequencies between the FPGA and the micro-controller, it is possible that we will have a metastability problem in this asynchronous interface. This is one of the design issues that we have thought about. Our planning is to set the Request and Busy signals to high long enough so that we are sure that they are detected by the FPGA and the micro-controller respectively.

This causes the micro-controller to keep its Request signal high until it knows that the FPGA successfully grabs the BadgeID value and processes it (i.e. the FPGA sets its Busy signal high). On the other hand, the FPGA will keep its Busy signal high long enough for the micro-controller to see. In addition, we will implement the edge-detection hardware (similar to the one discussed in class by Art Enyedy) to make sure that the metastability is no longer a problem.

8. Response to Reviewers’ Comment on the Preliminary Design Report

Group C reviews our preliminary design report and gives us some valuable comments. We will evaluate each comment from reviewers and give our response on them.

Under-specified Design

Our reviewers commented that a number of protocols were not fully specified in our design, and mentioned the firing frequency of the sonar and the duration of the FPGA authorization signal as specific examples. We agree with their comments and have specified these protocols in more detail.

Handshaking Protocol between FPGA and Micro-controller

Another protocol pointed out by our reviewer as vaguely specified was for the communication between the FPGA and the micro-controller. We agree with them on this point because our original report did not include timing information on each of the signals involved in the protocol and did not match exactly with our implementation plan.

 Our reviewers also believed that there is a problem with our protocol: If there is a glitch in the FPGA logic that causes to BUSY go low for a clock cycle and then go back to high, the micro-controller will not know if the glitch was caused by error in transferring BadgeID or in checking for authorization. Their proposed solution is to separate the communication into transferring BadgeID and signaling completion of processing in the FPGA. A four-way handshake will be used guarantee reliable transfer of BadgeID, and an interrupt to signal process completion. Our reviewers also suggested that breaking the protocol into two parts would make debugging easier, because we can see whether there are problems with transferring BadgeID or processing it.

We will be using interrupt to signal process completion to the micro-controller as our reviewers proposed. It was in our protocol but left unspecified in our original report. However, after careful considerations, we decided to not implement the rest of the suggested changes, for the following reasons:

a. Glitches can be handled in FPGA:

We think that glitches can be handled in the FPGA logic instead of the protocol. We might do so by registering the BUSY signal in the FPGA before sending it to the micro-controller.

b. Four-way handshake is unnecessary for our design:

Four-way handshake is useful for reliable transmission of a series of bytes between two nodes running on different clocks, because the sender will keep the current byte or data on the communication link and not send the next byte until the receiver has acknowledge the current byte. This guarantees that the sender will not send faster than the receiver can receive and cause loss of data on the receiving side. However, the micro-controller will never send faster than the FPGA can receive, because it will not be sending multiple bytes in series. The BadgeID contains 8 bits, all of which will be available on the 8 pins of Port 1 on the micro-controller. Since there is no additional data to send after these 8 bits, they can be kept on the pins of Port 1 until the FPGA finishes processing them.

c. Debugging might not be easier if we implement four-way handshake.

As we mentioned in b, we do think that four-way handshake is unnecessary. Furthermore, since the suggested design will be more complex than ours in transferring BadgeID, debugging might not be as easy as suggested.

User Panic / Repetitive Door Clasping

Our reviewers suggested that we keep the authorization signal high for some period of time. In this case, they chose four-second interval based on their experiment on the Hardware Lab door. We totally agree with the reviewers.

We follow our reviewers’ suggestion by adding the COUNTER32, COMPARATOR32, and CONSTANT sub-modules to the design of the FPGA (ID-CHECKER module) as described in the Design section above.

Obstructed door / Badge Problem

We agree with the reviewers that the obstructed door/badge problem cannot be solved with the existing hardware. We have thought of other alternatives of RF in the design tradeoff section. We decided to use the available software rather than change the transmission media.

Sonar Pulse

We agree with the reviewers that our preliminary design report is not detailed enough. Therefore in this final design report, we added the details on how to connect the modules, how to find distance and how often do we fire the sonar in the design section. In the calculation we did in design section, about 0.2s is needed for each cycle of sonar detection. We took the reviewers’ comment on firing the sonar twice per second because we tested a firing frequency of two per second is fast enough to test the presence of a user.

9. Sample Usage of our Product

For demo purpose, we implemented a small module in the FPGA to drive a motor of a door latch. (Frans, please put your section of)

[image: image23.png]ko code

0 N

DOOR_CONTROL

o
T T P

o1 e

COUNTERZ2 COMPARATOR32

CONSTANT_HI

eus . g 18 code

ensoie ouey et [
o e

SoUNTERS COMPARATOR32

CONSTANT_LO

Figure 19: Motor controller.

Afdasfadfa akjfdka dafdkj jadf

[image: image24.png]1ENABLE 1EQ_HI

ENABLE

1EQ_HI 1EQ_LO

Figure 20: Motor controller FSM

sdfsfgf

[image: image25.wmf]

Figure 21: LED mapping.

Fagsd gfsg

10. Response to Reviewers’ Comment on the Final Design Report

We made some modification on the preliminary design report based on our finding as implemented the DoorModule and the badge, and the reviewers’ comment on the preliminary design report. After that, our reviewer’s group, Group C reviews our final design report again and gives us some valuable comment and suggestion on making our project better. Below is a description of their comments followed by our response.

FPGA Design

Implementation Suggestion

Our reviewers concerned about the position of placing the transducer of the sonar ranging module. As we mentioned in the final design presentation, the transducer is going to place against the wall next the handle of the door as shown in figure 20.

[image: image26.png]Door
/ 3feet

Door

Figure 22: The position of the transducer of the sonr.

Our reviewer think that the sonar ranging module would have a difficult time determine how far away an object is if the object is not directly in front of the sonar ranging module. They suggest us installing the transducer at an angle as shown in figure 21. They think this would allow the sonar ranging module to accurately detect if anyone is walking directly toward the door.

[image: image27.wmf]

Figure 23: Proposed implementation from the reviewers.

We agree with our reviewers’ comment and we tested placing the transducer on both original position and the suggested position. We found that if we placed the transducer at an angle of 20 degree from the wall as suggested by our reviewers, the sonar ranging module can detects the user more efficiently.

11. Performance

We performed some testing after finishing the implementation. We first tested each of the components, i.e., the sonar, RF, and FPGA portions, separately. We tested that the sonar worked by setting the distance threshold to two feet, and confirmed that the sonar detected objects within the set range when they were approximately 22 inches away.

We tested the RF component of the project in two steps: first the badge and then the door module. We connected one RF board to the serial port on a PC, and used the demo software included in the RF development kit to send request messages to the badge. The badge replied with messages of the same length and the correct ID set on the badge. The test for the RF portion on the door module was similar to the above test. We set the door to continuously send out ID request messages, and watched these messages using the same demo software and the RF board connected to the PC. These tests are illustrated below in Figure 20.

[image: image28.wmf]PC

RF board

RF board

Badge

Testing Badge:

RS

-

232

PC

RF board

RF board

Door Module

Testing Door (RF):

RS

-

232

Figure 24: Testing on the RF of DoorModule and the Badge.

The user-checking circuit in FPGA was tested first by simulation with Xilinx Foundation Tools, and then in hardware by providing specific badge IDs using a switch and watching the output on the authorize signal. We confirmed that the circuit gave the correct outputs for each test IDs. (Put the waveform here)

We also tested the whole system after integrating all the parts. To see how the door module was switching between states and running the specific component, we used the LED on the XS-40 to display the state in the micro-controller. At important parts of the code for the microcontroller, we changed the digit displayed on the LED to show the current status of the controller.

By capturing the LED output on the logic analyzer, we were also able to estimate the response time of the whole system. Since the system displayed the digit ‘1’ when it was detecting users in the initial state, and that it would come back to the same state after a full cycle of the authentication process, we simply measured the time difference between two times the digit ‘1’ is display. Using this method, we found the overall response time to be approximately 500 ms.

In addition, we built a small circuit to drive a motor and demonstrated opening and closing a model door using our system.

The numerical test data we gathered is summarized below in Table 6.

Table 6: The result of testing on the final product.

	Estimated Overall Response Time
	500 ms

	Size of Compiled Code on Badge
	359 bytes

	Size of Compiled Code on Door Module
	1074 bytes

	Sonar Detection Threshold
	36 +/- 1 inch

12. Source Code Listing

Below is the source code we wrote for the micro-controller and FPGA.

Micro-controller

/*---DoorModule--*/

/* shared.h;

 * constants shared between badge and door

 */

/* length of the header in RF packets (TO/FROM, packet #, packet size) */

#define HEADER_LENGTH 3

/* length of the request message from door */

#define REQUEST_LENGTH 3

/* length of the response message from badge */

#define RESPONSE_LENGTH 4

/* type code for a request message */

#define REQUEST_CODE '1'

/* type code for a response message */

#define RESPONSE_CODE '2'

/* all badges have an RF node address of 1 */

#define BADGE_ADDRESS 1

/*---*/

/* door.h */

#ifndef DOOR_H

#define DOOR_H

//#include <reg51.h>

#include <w77c32.h>

//#include <at89x55.h>

/* possible states of the uC */

#define DETECTING_USER 1

#define REQUESTING_ID 2

#define CHECKING_ID 3

/* state of the whole door module */

extern unsigned char state;

extern unsigned char badgeID;

#endif

/*---*/

/* door.c*/

#include "../shared.h"

#include "door.h"

#include "sonar.h"

#include "rf.h"

#include "fpga.h"

/* states and flags */

unsigned char state = DETECTING_USER;

//unsigned char state = CHECKING_ID;

unsigned char badgeID = 0x41;
//A

void main()

{

/* interrupt settings */

EA = 1;

//
EX1 = 1;

//comment out on 05/30
T1 = 0;

 for (;;) {

switch(state) {

case DETECTING_USER:

 Sonar_Task();

 break;

case REQUESTING_ID:

RF_Task();

 break;

case CHECKING_ID:

 FPGA_Task();

break;

default:

state = DETECTING_USER;

}//end switch

 }

}/* end of main */

void Ext0_ISR() interrupt 0 {

if(state == DETECTING_USER)

Sonar_Ext0_Handler();

//
else if(state == CHECKING_ID)

//

FPGA_Ext1_Handler();

}

void Timer0_ISR () interrupt 1 {

 switch(state) {

 case DETECTING_USER:

Sonar_Timer0_Handler();

break;

 case REQUESTING_ID:

RF_Timer0_Handler();

break;

 case CHECKING_ID:

FPGA_Timer0_Handler();

break;

 }//end switch

}

void Ext1_ISR() interrupt 2 {

if(state == CHECKING_ID)

FPGA_Ext1_Handler();

}

void Timer1_ISR () interrupt 3 {

}

void Serial_ISR() interrupt 4 {

switch(state) {

case REQUESTING_ID:

RF_Serial_Handler();

break;

}

}

/*---*/

/* sonar.h */

#define H_THERSHOLD 54

// 3 feet

#define L_THERSHOLD 9

// 6 inches

#define RELOAD 208

 /* Reload value for 0.1 milliseconds for 25MHz */

#define RELOAD_LO ((-RELOAD)&(0xFF))
 /* Calculate low and high bytes */

#define RELOAD_HI (((-RELOAD)&(0xFF00))/(256))

/* fire sonar and do distance calculations;

 signals serialTask to do RF stuff when user

 is near by

*/

void Sonar_Task();

/* called by Ext0 ISR in DETECTING_USER state */

void Sonar_Ext0_Handler();

/* called by Timer0 ISR in DETECTING_USER state */

void Sonar_Timer0_Handler();

void print(char c);

void putChar(unsigned char c);

void printInt(unsigned int i);

/*---*/

/* sonar.c */

#include "door.h"

#include "sonar.h"

#include "rf.h"

/* states and flags */

static unsigned char dist = 0;

// count the cycle before echo comes back

static unsigned int count = 0;

// counter

static bit run = 1;

static bit echo = 0;

char xdata *leda = 0x0f000; // the FPGA is configured to memory map led to this address

/* fire sonar and do distance calculations;

 signals serialTask to do RF stuff when user

 is near by

*/

void Sonar_Task() {

/* interrupt settings */

EA = 1;

ET1 = 0;

ES = 0;

/* set timer */

TMOD = 0x21;

PCON = PCON | 0x80;

TH1 = 249;

TR1 = 1;

/* Set up and enable Timer0 for a 1 millisecond timer */

TL0 = RELOAD_LO;
/* Load the timer high and low bytes */

TH0 = RELOAD_HI;

TMOD = 0x21;

/* Timer1 & Timer0 as 16-bit timers */

TR0 = 1;

/* Start the timer 0 */

ET0 = 1;

/* Enable the timer interrupt 0 (Page 55) */

EX0 = 0;

/* Enable the external interrupt 0 */

EA = 1;

/* Enable the global interrupt */

IT0 = 1;

/* Enable the TCON for falling edge trigger */

T0 = 0;

/* T0 = P3.4 is connected to sonar INIT, pin 68 on the XS40 */

count = 0;

echo = 0;

PT0 = 1;

run = 1;

while (run) {

}

}/* end Sonar_Task */

/* called by Ext0 ISR in DETECTING_USER state */

void Sonar_Ext0_Handler() {

// pin 12

echo = 1;

}/* end
Sonar_Ext0_Handler() */

/* called by Timer0 ISR in DETECTING_USER state */

void Sonar_Timer0_Handler() {

TL0 = TL0 + RELOAD_LO ; // Load the timer high and low bytes

TH0 = RELOAD_HI;

count = count + 1;

if((count >=0) && (count < 60))

// RESET

{

EX0 = 0;

T0 = 0;

// init = 0

dist = 0;

echo = 0;

}

else if((count >= 60) && (count < 1060))
// logic high

{

*leda = 0x12;

// 1

T0 = 1;

// init = 1

if(echo == 0)

dist = dist + 1;

else

{

ET0 = 0;

// disable timer0 interrupt

EX0 = 0;

// disable external interrupt

IE = 0;

/***** Check here later ****/

state = REQUESTING_ID;
// echo comes back, switch state

run = 0;

return;

}

if((dist < L_THERSHOLD) || (dist > H_THERSHOLD))

{

IE0 = 0;

EX0 = 0;

}

else

EX0 = 1;

}

else if((count >= 1060) && (count < 11060))

//logic low

{

*leda = 0x5D;

// 2

T0 = 0;

}

else

{

count = 0;

}

} /* end Sonar_Timer0_Handler() */

/*

void print(char c)

{

SBUF = c;

while(TI == 0);

TI = 0;

}

void putChar(unsigned char c) {

unsigned char a = c/100;

unsigned char b = c%100;

unsigned char d = b/10;

unsigned char e = b%10;

print(a+48);

print(d+48);

print(e+48);

}

*/

/*---*/

/* rf.h */

/* possible states of the RF task */

#define RF_SENDING_REQUEST 1

#define RF_RECEIVING_REPLY 2

/* reload value for 16-bit 10 ms counter assuming 25MHz clock */

#define RF_RELOAD_HI 0xAE

#define RF_RELOAD_LO 0x9F

#define IN_BUFFER_SIZE 8

#define OUT_BUFFER_SIZE 8

void RF_Task();

/* called by Timer0 ISR in REQUESTING_ID state */

void RF_Timer0_Handler();

/* called by Serial ISR in REQUESTING_ID state */

void RF_Serial_Handler();

/* create request packet in out_buffer */

static void format_request(char* out_buffer);

/* set SFR values on startup */

static void RF_init();

/* set a n*10 ms time-out */

void set_timeout(unsigned char n);

void unset_timeout();

/*---*/

/* rf.c*/

#include "../shared.h"

#include "door.h"

#include "rf.h"

/* buffers */

static unsigned char in_buffer [IN_BUFFER_SIZE];

static unsigned char out_buffer [OUT_BUFFER_SIZE];

/* total # of bytes received into in_buffer */

static unsigned char bytes_received = 0;

/* # of bytes sent from out_buffer */

static unsigned char bytes_sent = 0;

/* total # of bytes to send from out_buffer */

static unsigned char bytes_to_send = 0;

/* # of 10ms before timeout */

static unsigned char overflow_count = 0;

/* time out flag */

static bit timed_out = 0;

char value = 0x01;

char xdata *ledaddress = 0x0f000; // the FPGA is configured to memory map led to this address

static void switch_to(unsigned char nextState) {

TR0 = 0;

TR1 = 0;

bytes_to_send = 0;

state = nextState;

}

void RF_Task() {

P1 = 0x00;

*ledaddress = 0x5B; //3

RF_init();

//generate request packet

format_request(out_buffer);

//send address byte of packet to test if RF board is busy

bytes_received = 0;

bytes_sent = 0;

bytes_to_send = 1;

set_timeout(5);

TI = 1;

//wait till RF board is NOT busy

while(1) {

//

*ledaddress = 0x52;//7

if (bytes_received > 0) {

if(in_buffer[0] == out_buffer[0]) {

unset_timeout();

//address byte echoed; send the rest of packet

bytes_to_send = HEADER_LENGTH + REQUEST_LENGTH;

bytes_received = 0;

//assert(bytes_sent == 1);

TI = 1;

break;

}

bytes_received = 0;

} else if (timed_out) {

//test again

bytes_sent = 0;

set_timeout(5);

TI = 1;

}

}

//wait till whole packet has been sent

while(bytes_sent < bytes_to_send) ;

*ledaddress = 0x3A; //4

//bytes_received = 0;

//wait for reply packet (includes BadgeID)

set_timeout(50);//0.5 sec time-out

while(1) {

if(bytes_received >= HEADER_LENGTH + RESPONSE_LENGTH) {

unset_timeout();

//pass badgeID to FPGA for checking

badgeID = in_buffer[HEADER_LENGTH + RESPONSE_LENGTH -1 -1];

P1 = badgeID;

switch_to(CHECKING_ID);

*ledaddress = badgeID;

// to be deleted later

return;

} /*else if(timed_out) {

unset_timeout();

switch_to(DETECTING_USER);

*ledaddress = 0x6F; //6

return;

}*/

//*ledaddress = 0x6B; //5

*ledaddress = bytes_received;

}

}/* end RF_Task */

static void set_timeout(unsigned char n) {

overflow_count = n;

timed_out = 0;

TH0 = RF_RELOAD_HI;

TL0 = RF_RELOAD_LO;

TR0 = 1;

}

static void unset_timeout() {

TR0 = 0;

TF0 = 0;

timed_out = 0;

}

void RF_Timer0_handler() {

if(--overflow_count==0) {

timed_out = 1;

TR0 = 0;

}

TH0 = RF_RELOAD_HI;

TL0 = RF_RELOAD_LO;

} //end of RF_Timer0_handler()

void RF_Serial_handler() {

if(RI==1) {

RI = 0;

if(bytes_received < IN_BUFFER_SIZE)

in_buffer[bytes_received++] = SBUF;

} else {

TI = 0;

if(bytes_sent < bytes_to_send)

SBUF = out_buffer[bytes_sent++];

}

} /* end of RF_Serial_handler() */

/* create the request packet in out_buffer */

static void format_request(char* out_buffer) {

out_buffer[0] = BADGE_ADDRESS;

out_buffer[0] <<= 4;

out_buffer[0] |= 4;

out_buffer[1] = 8; //telemetry mode

out_buffer[2] = REQUEST_LENGTH;

//out_buffer[3] = REQUEST_CODE;

out_buffer[3] = 2;

//out_buffer[4] = REQUEST_CODE;

out_buffer[4] = badgeID;

out_buffer[5] = 3;

} //end of format_reply

static void RF_init() {

/* interrupt settings */

EA = 1;

ET0 = 1;

ET1 = 0;

ES = 1;

/* set serial */

SM0 = 0;

SM1 = 1;

REN = 1;

/* setup timer0 as a 10 ms counter, timer1 as 19.2 kbps baud rate generator, assuming a 25MHz clock */

TMOD = 0x21;

PCON = PCON | 0x80;

TH0 = RF_RELOAD_HI;

TL0 = RF_RELOAD_LO;

TH1 = 249;

TR1 = 1;

}/* end of RF_init() */

/*---*/

/* fpga.h */

/* reload value for 16-bit 25 ms counter assuming 22MHz clock */

#define FPGA_RELOAD 5208 /* Reload value for 5 milliseconds for 25MHz */

#define FPGA_RELOAD_HI_B ((-FPGA_RELOAD)&(0xFF)) /* Calculate low and high bytes */

#define FPGA_RELOAD_LO_B (((-FPGA_RELOAD)&(0xFF00))/(256))

void FPGA_Task();

/* called by Timer0 ISR in CHECKING_ID state */

void FPGA_Timer0_Handler();

/* called by Ext1 ISR in CHECKING_ID state */

void FPGA_Ext1_Handler();

/* BUSY signal from the FPGA */

sbit Busy = P3^3;

/* REQ signal to the FPGA */

sbit Request = P3^5;

/*---*/

/* fpga.c */

#include "door.h"

#include "fpga.h"

/* # of 25 ms before timeout */

/* time out flag */

static bit done = 0;

static bit timeOut = 0;

static bit runFPGA = 1;

unsigned char subseconds = 0;

unsigned char seconds = 0;

char xdata *led = 0x0f000; // the FPGA is configured to memory map led to this address

void FPGA_Task() {

/* set timer */

PCON = PCON | 0x80;

TMOD = 0x21;

/* Set up and enable Timer0 for a 1 millisecond timer */

TL0 = FPGA_RELOAD_LO_B;
/* Load the timer high and low bytes */

TH0 = FPGA_RELOAD_HI_B;

EA = 1;

/* Enable the global interrupt */

EX1 = 1;

/* Enable the external interrupt 1 */

IT0 = 1;

/* Enable the TCON for falling edge trigger */

runFPGA = 1;

done = 0;

timeOut = 0;

//
T0 = 1;

// Request = 1

//
T1 = 1;

// p3.5: pin 22, Request = 0

T1 = 0;

// p3.5: pin 22, inv(Request) = 1

TR0 = 1;

/* Start the timer 0 */

ET0 = 1;

/* Enable the timer interrupt 0 (Page 55) */

PT0 = 1;

/* Timer 0 Interrupt Priority */

IE0 = 0;

*led = 0x52;
// 7

//while(1);

while (runFPGA) {

if((done) || (timeOut))

{

*led = 0xFF; //8

ET0 = 0;

// disable timer interrupt 0

EX0 = 0;

// disable ext int 0

EX1 = 0;

// disable ext int 1

EA = 0;

//

T1 = 0;

// p3.5: pin 22, Request = 1

T1 = 1;

// p3.5: pin 22, inv(Request) = 0

if(timeOut)

{

*led = 0x7B;
//9

// reset FPGA;

}

state = DETECTING_USER;

runFPGA = 0;

}

}

//
while(1) {}

}/* end FPGA_Task */

void FPGA_Timer0_Handler() {

TL0 = TL0 + FPGA_RELOAD_LO_B ; // Load the timer high and low bytes

TH0 = FPGA_RELOAD_HI_B;

subseconds = subseconds + 1;

if (subseconds == 100) { // and check for one/tenth-second rollover

subseconds = 0;

seconds = seconds + 1;

if(seconds == 12)

{

timeOut = 1;

seconds = 0;

}

}

} /* end of FPGA_Timer0_Handler() */

void FPGA_Ext1_Handler() {

//*led = 0x5D;
//2

done = 1;

IE0 = 0;

} /* end of FPGA_Ext1_Handler() */

/*--Badge--*/
#include <at89x55.h>

#include "../shared.h"

/* possible states of the badge */

#define RECEIVING_REQUEST 1

#define SENDING_REPLY 2

/* reload value for 16-bit 10 ms counter assuming 22MHz clock */

#define RELOAD_HI 0xB8

#define RELOAD_LO 0x63

#define IN_BUFFER_SIZE 8

#define OUT_BUFFER_SIZE 8

/* buffers */

unsigned char in_buffer [IN_BUFFER_SIZE];

unsigned char out_buffer [OUT_BUFFER_SIZE];

/* total # of bytes received into in_buffer */

unsigned char bytes_received = 0;

/* # of bytes sent from out_buffer */

unsigned char bytes_sent = 0;

/* total # of bytes to send from out_buffer */

unsigned char bytes_to_send = 0;

/* 50 ms time out flag */

unsigned char timed_out = 0;

/* badge ID */

unsigned char badgeID = 'l';

/* create reply packet in out_buffer according to in_buffer */

void format_reply(char* in_buffer, char* out_buffer);

/* set SFR values on startup */

void init();

/* send address byte of packet to test if RF board is busy */

void send_address_byte();

void main()

{

/* state of badge */

unsigned char state = RECEIVING_REQUEST;

//P1 = 0x00;

init();

/* loop forever to serve requests */

 for(;;) {

switch(state) {

case RECEIVING_REQUEST:

if(bytes_received >= HEADER_LENGTH + REQUEST_LENGTH) {

state = SENDING_REPLY;

}

break;

case SENDING_REPLY:

/* for demo: read ID from port 1 */

badgeID = P1;

bytes_received = 0;

format_reply(in_buffer, out_buffer);

//send address byte of packet to test if RF board is busy

send_address_byte();

//wait till RF board is NOT busy

while(1) {

if (bytes_received > 0) {

if(in_buffer[0] == out_buffer[0]) {

//address byte echoed; send the rest of packet

TR0 = 0;

bytes_to_send = HEADER_LENGTH + RESPONSE_LENGTH;

//assert(bytes_sent == 1);

TI = 1;

break;

}

bytes_received = 0;

} else if (timed_out) {

//test again

send_address_byte();

}

}

//wait till whole packet's been sent

while(bytes_sent < bytes_to_send) ;

bytes_received = 0;

state = RECEIVING_REQUEST;

break;

default:

bytes_received = 0;

state = RECEIVING_REQUEST;

}

}

}/* end of main */

/* create the reply packet in out_buffer */

void format_reply(char* in_buffer, char* out_buffer) {

//swap the upper 4 bits with the lower 4

char temp = in_buffer[0] << 4;

out_buffer[0] = temp | in_buffer[0] >> 4;

out_buffer[1] = 8; //telemetry

out_buffer[2] = RESPONSE_LENGTH;

out_buffer[3] = 2;

out_buffer[4] = RESPONSE_CODE;

out_buffer[5] = badgeID;

out_buffer[6] = 3;

}

//send address byte of packet to test if RF board is busy

void send_address_byte() {

timed_out = 0;

bytes_sent = 0;

bytes_to_send = 1;

TH0 = RELOAD_HI;

TL0 = RELOAD_LO;

TR0 = 1; //set time-out

TI = 1;

}

void Timer0_ISR () interrupt 1 {

static unsigned char count = 0;

if(++count == 5) {

TR0 = 0;

count = 0;

timed_out = 1;

}

TH0 = RELOAD_HI;

TL0 = RELOAD_LO;

} /* end of Timer0_ISR() */

void Serial_ISR() interrupt 4 {

if(RI==1) {

RI = 0;

if(bytes_received < IN_BUFFER_SIZE)

in_buffer[bytes_received++] = SBUF;

} else {

TI = 0;

if(bytes_sent < bytes_to_send)

SBUF = out_buffer[bytes_sent++];

}

}/* end of Serial_ISR() */

void init() {

/* interrupt settings */

EA = 1;

ET0 = 1;

ET1 = 0;

ES = 1;

/* set serial */

SM0 = 0;

SM1 = 1;

REN = 1;

/* setup timer0 as a 50 ms counter, timer1 as 19.2 kbps baud rate generator, assuming a 22MHz clock */

TMOD = 0x21;

PCON = PCON | 0x80;

TH0 = RELOAD_HI;

TL0 = RELOAD_LO;

TH1 = 250;

TR1 = 1;

}/* end of init() */

/*---*/

FPGA

verilog

/*--ModuleName--*/

/*---*/

13. Reference

XS40 FPGA Board Programmer’s Manual. 1999 XESS Corporation. http://www.cs.washington.edu/education/courses/477/00sp/docs/prgmdl40.pdf

(April 17, 2001)

XS40 Board Schematics. 1997-1999 X Engineering Software Systems Corporation. http://www.cs.washington.edu/education/courses/477/00sp/docs/xsschpwb.pdf

(April 17, 2001)

XS40, XSP Board V1.4 User Manual. http://www.cs.washington.edu/education/courses/477/00sp/docs/xs40-manual-v1_4.pdf (April 19, 2001)

80C51 Family Architecture. March 1995. Philips Semiconductor. 1995.http://www.cs.washington.edu/education/courses/477/00sp/docs/famarch.pdf

(April 17, 2001)

80C51 Family Hardware Description. Aug 12,1996. Philips Semiconductor. http://www.cs.washington.edu/education/courses/477/00sp/docs/famhdwr.pdf

(April 19, 2001)

Line-Powered RS-232 Transceiver Chip. Dallas Semiconductor. http://www.dalsemi.com/datasheets/pdfs/275.pdf

(April 19, 2001)

AN597 Implementing Ultrasonic Ranging. Microchip Technology Inc.

http://www.eetasia.com/ART_8800046964_499481%2C499490.HTM

(May 1, 2001)

Polaroid 6500 Ranging Module. Polaroid.

http://www.acroname.com/robotics/parts/R11-6500.html

(May 8, 2001)

Polaroid Instrument Grade Transducer.

http://www.acroname.com/robotics/parts/R13-616341.html

(May 8, 2001)

PAGE
27

_1051645078.xls
Sheet1

		Design Properties		Required Values

		Maximum Power Consumption of Badge (excluding RF)		500 mW

		Maximum Delay for Door Response		2 seconds

		Maximum Distance from Door		3 feet

		Voltage		5 V

		Clock Speed		25 MHz

		Code Size		20 Kbyte

		Badge and Module pair		1

		Minimum Distance of Two Door Module		8 feet

		Sonar Fire Period		0.5 seconds

		Authorization Signal High		4 seconds

		Maximum Badge Used per Door Module		256

		Maximum Badge Authorized at Any Time		1

_1053331216.unknown

_1053336661.xls
Sheet1

				Signals		Pin Numbers

		Input		BADGEID[7]		67

				BADGEID[6]		66

				BADGEID[5]		70

				BADGEID[4]		77

				BADGEID[3]		6

				BADGEID[2]		9

				BADGEID[1]		8

				BADGEID[0]		7

				REQUEST		48

				RESET		36

				CLK		13

		Output		BUSY		47

				AUTHORIZE		44

_1053337028.doc
[image: image1.png]LD8

ADDR[7:0] oo az ADDRESSI7:0]
LD8
ADDR([7:0} - LED[7:0]
e
AND2B1
LD

ADDR{[15:8], ADDRESS[7:0]

[soon/BHPE 2% oyl

15 Lep

COMP16

_1053333939.ppt

Door

Module

Reques

BadgeID

AUTH

sensor

Badge

1

2

3

4

_1053334920.doc
[image: image1.png]Door
/ 3feet

Door

_1051666873.ppt

Protocol Board

Data Board

8051

RS 232

RF Development Board

Sends byte

Packet, ack, and retransmit

_1053261534.doc
[image: image1.png]BADGEID[7:0
LB oy T Er—
[[USERDE
REGISTERS REGISTERB onuse
KZEDN KZEDN W
REGISTER REGISTER (R —
Y oy] Ty

REGISTER REGISTER

ae [no oce

[T gremepeey I
cusic e v u
L REGISTER
COUNTERSZ
eusne g | __eumineg
COUNT[31:0] u
REGISTER
— _:s::\kmavcad;w o

CONSTANT_AUTH COMPARATOR32

_1053273481.ppt

PC

RF board

RF board

Badge

Testing Badge:

RS-232

PC

RF board

RF board

Door Module

Testing Door (RF):

RS-232

_1051678521.ppt

CLK

BadgeID

REQUEST

BUSY

AUTH

Not Authorized

Authorized

_1051666270.ppt

Protocol Board requires:

TO/FROM

Packet #

Packet Size

Data Bytes

We add:

REQUEST

RESPONSE

BadgeID

Request from Door

Response from Badge

_1050957132

_1050958930

_1050960168

_1051644777.xls
Sheet1

		Sub-Module		Type		Signal

		USERDB		Input		BADGEID[7:0]

				Output		DBVALUE

		COUNTER32		Input		RESET

						ENABLE

						CLK

				Output		OUT[31:0]

		COMPARATOR32		Input		A[31:0]

						B[31:0]

				Output		EQUAL

		CONSTANT		Output		OUT[31:0]

		CONTROL		Input		DBVALUE

						REQUEST

						RESET

						CLK

				Ouput		BUSY

						AUTHORIZE

Sheet2

		

Sheet3

		

_1050957964

_1049835297.ppt

Badge

FPGA (DoorModule)

8051 (DoorModule)

Request + DoorID

DoorID + BadgeID

Request + BadgeID

Check BadgeID

Sonar

INIT

ECHO

Time

Time Sequence

_1049841835.ppt

Problem 2: One Door and Two Badges Revisit

Door 1

Door 2

Request

Request

3 feet

3 feet

Door Module

Door Module

aaaaa

_1049844803.ppt

XS40

RF

FPGA

8051

AUTH

INIT

ECHO

BADGEID

REQUEST

BUSY

IE0

Door Module

RS232

(sonar)

XS40

_1049841742.ppt

Problem 1: One Badge and Two Doors

Door 1

Door 2

BadgeID

3 feet

3 feet

Door Module

Door Module

aaaaa

_1049242496.ppt

8051

Sonar

Part of Door Module

INIT

Testing Sonar

uC = micro-controller

RF = radio-frequency transceiver

Ext = external interrupt pin

ECHO

ext

I/O pin

RS 232

_1049833510.ppt

Detecting User

Requesting ID

Checking ID

State Diagram for the DoorModule

Detected user within

a specified range

Time out in

ID request

ID received

Done Checking

_1049241588.ppt

uC

RF

Logic analyzer

RS-232

I/O pins on uC

Testing RF Link

uC = micro-controller

RF = radio-frequency transceiver

uC

RF

RS-232

Badge

Part of Door Module

_1049242317.ppt

FPGA

switches

ID

request

LED

open

Testing UserID Checking Unit

