Bluetooth: Short-Range RF Communication

✿ Brief overview
✿ Scenario with the personal server
✿ Issues

Overview

✿ Universal short-range wireless capability
✿ Uses 2.4-GHz (ISM) band
✿ Available globally for unlicensed users
✿ Devices within 10m can share up to 720 kbps of capacity
Bluetooth Application Areas

- Data and voice access points
 - Real-time voice and data transmissions
 - Cordless headsets
 - Three-in-one phones: cell, cordless, walkie-talkie
- Cable replacement
 - Eliminates need for numerous cable attachments for connection
 - Automatic synchronization when devices within range
- Ad hoc networking
 - Device with Bluetooth radio can establish connection with another when in range
 - Devices can “imprint” on each other so that authentication is not required in each instance
 - Meeting support for file/business card transfers

Bluetooth Standards Documents

- Core specifications
 - Details of various layers of Bluetooth protocol architecture
- Profile specifications
 - Use of Bluetooth technology to support various applications
Protocol Architecture

- Bluetooth is a layered protocol architecture
 - Core protocols
 - Radio
 - Baseband
 - Link manager protocol (LMP)
 - Logical link control and adaptation protocol (L2CAP)
 - Service discovery protocol (SDP)
 - Cable replacement and telephony control protocols
 - Adopted protocols

Bluetooth Stack Overview
Protocol Architecture

- Cable replacement protocol
 - RFCOMM
- Telephony control protocol
 - Telephony control specification – binary (TCS BIN)
- Adopted protocols
 - PPP
 - TCP/UDP/IP
 - OBEX
 - WAE/WAP
- Profiles – vertical slide through the protocol stack
 - Basis of interoperability
 - Each device supports at least one profile
 - Defined based on usage models (e.g., headset, camera, personal server, etc.)

Piconets and Scatternets

- Piconet
 - Basic unit of Bluetooth networking
 - Master and one to seven slave devices
 - Master determines channel and phase
- Scatternet
 - Device in one piconet may exist as master or slave in another piconet
 - Allows many devices to share same area
 - Makes efficient use of bandwidth
Wireless Network Configurations

Radio Specification

◆ Classes of transmitters
 ■ Class 1: Outputs 100 mW for maximum range
 ✷ Power control mandatory
 ✷ Provides greatest distance
 ■ Class 2: Outputs 2.4 mW at maximum
 ✷ Power control optional
 ■ Class 3: Nominal output is 1 mW
 ✷ Lowest power
Frequency Hopping in Bluetooth

- Provides resistance to interference and multipath effects
- Provides a form of multiple access among co-located devices in different piconets

Frequency Hopping

- Total bandwidth divided into 1MHz physical channels
- FH occurs by jumping from one channel to another in pseudo-random sequence
- Hopping sequence shared with all devices on piconet
Physical Links between Master - Slave

- **Synchronous connection oriented (SCO)**
 - Allocates fixed bandwidth between point-to-point connection of master and slave
 - Master maintains link using reserved slots
 - Master can support three simultaneous links

- **Asynchronous connectionless (ACL)**
 - Point-to-multipoint link between master and all slaves
 - Only single ACL link can exist

Bluetooth Packet Fields

- **Access code** – used for timing synchronization, offset compensation, paging, and inquiry
- **Header** – used to identify packet type and carry protocol control information
- **Payload** – contains user voice or data and payload header, if present
Channel Control

 States of operation of a piconet during link establishment and maintenance

 Major states
 - Standby – default state
 - Connection – device connected

 Interim substates for adding new slaves
 - Page – device issued a page (used by master)
 - Page scan – device is listening for a page
 - Master response – master receives a page response from slave
 - Slave response – slave responds to a page from master
 - Inquiry – device has issued an inquiry for identity of devices within range
 - Inquiry scan – device is listening for an inquiry
 - Inquiry response – device receives an inquiry response
L2CAP Logical Channels

- **Connectionless**
 - Supports connectionless service
 - Each channel is unidirectional
 - Used from master to multiple slaves

- **Connection-oriented**
 - Supports connection-oriented service
 - Each channel is bidirectional

- **Signaling**
 - Provides for exchange of signaling messages between L2CAP entities
Personal Server Scenario

Scenario steps

- Master device (PC) pages for nearby devices
- Slave device (personal server) responds to page when in range
- L2CAP establishes Bluetooth connection assigning paging device to be master
- Devices exchange profiles they both support
- Agree upon PAN + TCP/IP as the vertical slice
- Fixed IP addresses exchanged (could have used DHCP)
- Devices can now send messages to each other
Stack

- App + TCP/IP + PAN + L2CAP + Bluetooth
- App packets are encapsulated into IP
- IP packets are broken down into Bluetooth segments for reassembly on the other device
- Keep-alive packets used to maintain connections
- Connections dropped if keep-alive packets are not acknowledged

Issues

- How are multiple personal servers viewed by the master paging them?
- How does the application know they are there?
- What if there are two masters within range of each other?