
CSE 475 Creature Spec

Ryan Rowe, Austin Beaulieu

Rev. 2018-11-11 23:24:06

1 Summary

In this capstone we will function as a single mega-design team who have been commissioned to design
and program a multi-nodal mesh radio-controlled set of “Creatures” who live in a large public space such
as the Allen Center Atrium. The “Creatures” make sound, emit multi-colored light, sense motion, sense
light levels and noise levels, and communicate to each other through 900MHz packet radio transmissions.

All “Creatures” obey a common set of rules of behavior, which encourages cooperation between “Crea-
tures” and cumulatively produce emergent behavior of the group. This effect should be pleasing and
relaxing, much more beneficial and entertaining than the usual background music.

We will explore such technologies as mesh networking, interrupt-driven multi-threaded processing,
power-saving techniques, and rule-making to achieve leaderless emergent behavior. We will apply non-
technical skills such as selecting colors and patterns and sounds for their expressive, evocative, and pleasing
aesthetic effects.

1



2 The Creature Algorithm

2.1 Initialization

When each creature turns on, it must go through initialization:

1. Wait for communication with Controller

2. Receive & set data from AdjustGlobals packet

3. Initialize current state randomly from the list of standard states

2.2 Loop

For every RepeatCycle amount of time, run the following process:

1. If the controller sends PlaySound(N) or PlayEffect(N), play that sound and/or effect, else play current state

2. Start the radio and set listen timer for rand(minListen, maxListen) milliseconds for other creatures and/or the con-
troller

3. Calculate the transition to the next state

4. Set a timer for minListen for sending the new state to other creatures when timer fired

2.3 Bookkeeping

Each creature needs to maintain values pertaining to the global state of the creature network and to the internal state of the
creature itself. This section outlines these values.

2.3.1 Global Values

Creatures will receive state transition packets from other creatures. Each should maintain a list of the states other creatures
are in and update this as it changes. We refer to this as the StateList. If a creature has not contacted another, they should
assume it to be in the wait state (0x00) internally. The creature should also maintain a running average of RSSI from these
packets. This average should serve as a reasonably accurate heuristic for the distances from other creatures. We refer to this
as DistanceList.

2.3.2 Local Values

Several values must be maintained by the program pertinent to the creature itself. These values are used for computing state
transitions & startles.

Variable Description
uint32 t LAST STARTLE Time in milliseconds since last startle
uint8 t LAST STARTLE ID The last startle ID received
uint8 t STARTLE THRESHOLD Current numeric value of the startle threshold
State CURRENT STATE The current state object being maintained
uint8 t REPEAT STATE How many more state repetitions before calculating the next state

2



3 Packet Protocol

Packets are sent and received in the following format. The first byte is the packet identifier, followed by the originating
address (either 2× kit or 2× kit− 1) and destination address. To send a packet to all creatures, use the broadcast address
0xFF.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

uint8 t pid uint8 t src addr uint8 t destAddr uint8 t payload[sizeof(packet) - 3]

All payload contents are listed by their byte offset inside the payload array.

3.1 Broadcast Packets

These are all packets that are broadcast by the controller to your creature. You should verify that src addr == 0 and
dst addr is either your creature’s address or the broadcast address.

PID 0x00 Set Globals

Updates a series of creature variables. Only valid if src addr == 0.

Byte Variable Default Description
0 uint16 t TX POWER 1 Radio transmit power
2 uint8 t STARTLE RAND MIN 100 Minimum bound when generating startle strength
3 uint8 t STARTLE RAND MAX 200 Maximum bound when generating startle strength
4 uint8 t STARTLE MAX 255 Maximum startle strength
5 uint8 t STARTLE THRESHOLD 150 Trigger threshold for being startled
6 uint8 t STARTLE DECAY 30 Distance decay for startle packets
7 uint8 t NUM CREATURES 40 Number of creatures in the network
8 float STARTLE THRESHOLD DECAY 0.001 Decay of threshold per millisecond

12 uint16 t CYCLE TIME 5000 Amount of time between each play state

PID 0x01 Stop

Enter wait state. Only valid if src addr == 0.

PID 0x02 Start

Exit the wait state. Only valid if the creature is currently waiting src addr == 0. Note: the mode 0x0000 would indicate
starting in state wait, but since this command is only accepted while we’re already waiting, it indicates starting randomly.

Byte Variable Description

0 uint8 t mode
0x00 Start in state specified
0x01 Continue

1 uint8 t stateId State to start in, unless continuing from last state. wait (0x00) indicates starting from a random state.

PID 0x03 Play Sound

Only valid if src addr == 0. Tells a creature to temporarily stop its current process and play this specific sound for X cycles.

Byte Variable Description
0 uint8 t sound Sound number to play

PID 0x04 Play Effect

Only valid if src addr == 0. Tells a creature to temporarily stop its current process and play this specific effect for X cycles.

Byte Variable Description
0 uint8 t effect Effect number to play

3



PID 0x05 Broadcast States

Only valid if src addr == 0. The controller here sends a list of the last observed state for all N creatures. State identifiers
are those described by §6.

Byte Variable Description
0 uint8 t state 1 Creature 1’s state ID
· · · · · · · · ·

N − 1 uint8 t state n Creature N ’s state ID

3.2 Creature Packets

These are all packets that are sent by your creature either to the controller or to other creatures. When you send these
packets, be sure to set src addr to your creature’s address and set dst addr correctly depending on the packet type and
purpose.

PID 0x06 Startle

Sent when a creature transitions into a startled state. This should be packet should be sent to all creatures (a.k.a. broadcast
address) with destAddr == 0xFF.

Byte Variable Description
0 uint8 t strength Startle strength
1 uint8 t startle id Startle identifier

PID 0x07 Send State

Relays a creature’s current state to the central controller. This packet should only be sent with destAddr == 0 and should
be sent whenever a creature transitions from one state to another.

Byte Variable Description
0 uint8 t old state Previous state identifier as described in §6
1 uint8 t state New state identifier

PID 0x08 Sound Played

TODO: Should we keep this?

PID 0x09 Effect Played

TODO: Should we keep this?

4 Global Values

TODO: Write descriptions & usages of globals

4



5 Startles

A creature can enter into the startle state from one of two ways: a rising edge from the PIR sensor (0 to 1) or from a startle
passed on from another creature. Each creature has an internal startle threshold that lowered proportional to the time since
the last startle. When a startle occurs, a strength is randomly generated which decides how ‘large’ the startle is. This value
is used to determine if the creature is actually startled by comparing it to the current startle threshold. If it does, it enters
into a startle state, and then passes on this startle. This value could be used to determine how great a response is–perhaps
by volume or length.
STARLE FACTOR = Local decay of startle for each state
STARTLE THRESHOLD DECAY = Global decay of startle

pir is called when the PIR sensor is activated.

1: function pir
2: if is not duplicate (This is handled for you automatically) then
3: strength ← min

{
255, rand(STARTLE MIN, STARTLE MAX)×

(
1− 255

STARTLE TREHSOLD
· 0.5 + 1

)}
4:

5: startle(strength, rand(0, 255))
6: end if
7: end function

rxStartle is called when a startle packet is received from another creature. It decays the startle proportional to the heuristic
distance. Note: We use the sigmoid function here: σ(x) = 1/(1 + e−x)

1: function rxStartle(RSSI, strength, id)
2: decay ← σ

(
STARTLE DECAY−RSSI

STARTLE DECAY

)
× STARLE FACTOR

3: startle(decay× strength, id)
4: end function

startle is called when this creature has successfully been startled, either by the PIR sensor or by receiving a startle packet.

1: last.id ← the id of the last startle to pass the threshold
2: last.time ← the time (in millis) since the last startle.
3: function startle(strength, id)
4: if id 6= last then
5: time ← millis()
6: threshold ← threshold− threshold× (time− last.time)× STARTLE THRESHOLD DECAY× STARLE FACTOR

7: if strength ≥ state.threshold() then
8: Transition into Startle State
9: txStartlePacket(strength, id)

10: last.id ← id
11: end if
12: last.time ← time
13: end if
14: end function

5



6 States

To offer examples and build a potential scene for our network of creatures, lets imagine the scenery of a rain forest and how
these states could be used to bring this scene to life in a pleasing way.

6.1 Pause And Listen State

When a creature receives a Stop packet from the controller, it enters into this state and does not perform any action. It stays
in this state until it receives a Start packet from the controller and continues the general process of the creature algorithm.
This is identified as state 0x00

6.2 Startle State

When a creature crosses the STARTLE THRESHOLD it will enter into this state, perform the appropriate action, then randomly
decide a new start state and continue where it left off. The startle action should be identifiable from active states. The
sounds should be very loud and active, and the visuals should convey something similar. To build onto the idea of the rain
forest, an example of a startle could be the roar of a large cat or the thunderous strike of lightning (If several creatures are in
a rain state) accompanied by a large flash of light. One could define the effect of the startle state as dependant on the state
of other creatures in the network (i.e. thunder if several are in the ambient rain state, else a cacophony of animal sounds.
This is identified as state 0xFF

6.3 Normal States

6.3.1 Ambient

Each implementation must include 3 “ambient” states. These should have a high likelihood of being entered, but this
likelihood should decrease linearly to the number of creatures in a “prominent” state. These states should convey calm and
pleasing sounds that blend into the rest of the scene and with other creatures displaying an ambient state. The sounds should
be subtle and the visual effects should be regular. An example of this could be raindrop sounds accompanied with slowly
twinkling blueish lights in a rain forest scene, the sounds of small critters (like bugs and quieter birds), or the flow of water.
One could even define the state transitions such that rain is unlikely to enter into, but if some creatures enter into it, it
becomes increasingly more likely, creating a rainstorm!
These states should be identified by an odd hex value: 0x01, 0x03, ..., etc.

6.3.2 Active

Each implementation must include 3 “active” states. These should have a normal likelihood of being entered, and this
likelihood should increase linearly to the number of creatures in active and prominent states. These states should convey
that action is occurring within the scene. To further build on this idea of a rain forest scene, an example of this could be
the sounds of leaves rustling or of louder birds or other animals accompanied with more active visual effects, possibly in sync
with the sounds that are being output.
These states should be identified by an even hex value: 0x02, 0x04, ..., etc.

6



7 State Transitions

All creatures will have a predetermined number of states that they can enter into, with reasonably similar intention for the
state itself. This does not mean that they will be similar in how they are implemented, but rather that certain states, like a
startle state, convey a similar tone as that of other creatures. Each state will set MaxRepeats, which defines how many times
a creature will repeat a certain state before calculating the next state transition. When entering into a state the number of
repeats is defined as rand(1, MaxRepeats).

Let S be the set of all states a creature can enter into
Let d be the number of possible creature states
Let N be the number of all creatures

All creatures will have a global value defined by GLOBAL WEIGHTS, passed by from the central controller. In this we refer
to it as L

L ∈ Rd: The set of scalars used for determining the weight that other creatures of the same state have on this crea-
ture’s likelihood of transitioning into that state. If a scalar Ln > 0, then it directly scales with respect to the number of
creatures in state Cn, else if Ln < 0, it negatively scales such that the more creatures there are in state Cn, the less likely
one is to enter into it.

Each creature will be able to enter into one of S. To compute this, we will a few things:

1. C : The set representing the record of the current state of all other N creatures.

2. Wi ∈ Rd: The set of relative weights for transitions into its next state based on this creature’s current state (higher
weights being more likely).

3. Oi ∈ RN : The distance from this creature to the N other creatures

4. Di ∈ RN : The inverse distances of the N creatures to this creature derived from O. If Oi 6= 0 then Di = −1/Oi, else
Di = 0

The final weight for a transition from state Si to state Sj is calculated as follows:

L̃j = Lj ·
N−

∑N
k=0[[Ck=Sj ]]
N

P =
{

max(0,Wi,j + L̃j ·
∑N

k=0 Di,j [[Ck = Sj ]])
}N

j=1
for each creature Ci

P̃ =
{∑j

i=1 Pi

}N

j=1

Let R = rand(0, P̃N )

1: for i ∈ {1, ..., N} do

2: if R < P̃i then
3: Let Si be the next state to transition to
4: end if
5: end for

7


