
1

Ensembles

• An ensemble is a set of classifiers whose

combined results give the final decision.

test feature vector

classifier 1 classifier 2 classifier 3

super classifier

result

2

*A model is the learned decision rule. It can be as simple as a

hyperplane in n-space (ie. a line in 2D or plane in 3D) or in the

form of a decision tree or other modern classifier.

MODEL* ENSEMBLES

• Basic Idea

• Instead of learning one model

• Learn several and combine them

• Often this improves accuracy by a lot

• Many Methods

• Bagging

• Boosting

• Stacking

Bagging

• Generate bootstrap replicates of the

training set by sampling with replacement

• Learn one model on each replicate

• Combine by uniform voting

3

4

Boosting

• Maintain a vector of weights for samples

• Initialize with uniform weights

• Loop

– Apply learner to weighted samples

– Increase weights of misclassified ones

• Combine models by weighted voting

5

6

Idea of Boosting

7

Boosting In More Detail
(Pedro Domingos’ Algorithm)

1. Set all E weights to 1, and learn H1.

2. Repeat m times: increase the weights of

misclassified Es, and learn H2,…Hm.

3. H1..Hm have “weighted majority” vote

when classifying each test

Weight(H)=accuracy of H on the training

data

8

ADABoost

• ADABoost boosts the accuracy of the

original learning algorithm.

• If the original learning algorithm does

slightly better than 50% accuracy,

ADABoost with a large enough number of

classifiers is guaranteed to classify the

training data perfectly.

9

ADABoost Weight Updating

(from Fig 18.34 text)

/* First find the sum of the weights of the misclassified samples

*/

for j = 1 to N do /* go through training samples */

if h[m](xj) <> yj then error <- error + wj

/* Now use the ratio of error to 1-error to change the

weights of the correctly classified samples */

for j = 1 to N do

if h[m](xj) = yj then w[j] <- w[j] * error/(1-error)

Example

10

• Start with 4 samples of equal weight .25.

• Suppose 1 is misclassified. So error = .25.

• The ratio comes out .25/.75 = .33

• The correctly classified samples get weight of .25*.33 = .0825

.2500

.0825

.0825

.0825

What’s wrong? What should we do?

We want them to add up to 1, not .4975.

Answer: To normalize, divide each

one by their sum (.4975).

11

Sample Application: Insect Recognition

Using circular regions of interest selected by an interest operator,

train a classifier to recognize the different classes of insects.

Doroneuria (Dor)

12

Boosting Comparison

• ADTree classifier only (alternating decision tree)

• Correctly Classified Instances 268 70.1571 %

• Incorrectly Classified Instances 114 29.8429 %

• Mean absolute error 0.3855

• Relative absolute error 77.2229 %

Classified as -> Hesperperla Doroneuria

Real

Hesperperlas

167 28

Real

Doroneuria

51 136

13

Boosting Comparison

AdaboostM1 with ADTree classifier

• Correctly Classified Instances 303 79.3194 %

• Incorrectly Classified Instances 79 20.6806 %

• Mean absolute error 0.2277

• Relative absolute error 45.6144 %

Classified as -> Hesperperla Doroneuria

Real

Hesperperlas

167 28

Real

Doroneuria

51 136

14

Boosting Comparison

• RepTree classifier only (reduced error pruning)

• Correctly Classified Instances 294 75.3846 %

• Incorrectly Classified Instances 96 24.6154 %

• Mean absolute error 0.3012

• Relative absolute error 60.606 %

Classified as -> Hesperperla Doroneuria

Real

Hesperperlas

169 41

Real

Doroneuria

55 125

15

Boosting Comparison

AdaboostM1 with RepTree classifier

• Correctly Classified Instances 324 83.0769 %

• Incorrectly Classified Instances 66 16.9231 %

• Mean absolute error 0.1978

• Relative absolute error 39.7848 %

Classified as -> Hesperperla Doroneuria

Real

Hesperperlas

180 30

Real

Doroneuria

36 144

16

References

• AdaboostM1: Yoav Freund and Robert E. Schapire (1996).
"Experiments with a new boosting algorithm". Proc
International Conference on Machine Learning, pages 148-
156, Morgan Kaufmann, San Francisco.

• ADTree: Freund, Y., Mason, L.: "The alternating decision tree
learning algorithm". Proceeding of the Sixteenth International
Conference on Machine Learning, Bled, Slovenia, (1999) 124-
133.

17

Random Forests

• Tree bagging creates decision trees using the

bagging technique. The whole set of such trees

(each trained on a random sample) is called a

decision forest. The final prediction takes the

average (or majority vote).

• Random forests differ in that they use a modified

tree learning algorithm that selects, at each

candidate split, a random subset of the features.

18

Back to Stone Flies

19

Random forest of 10 trees, each constructed while considering 7 random features.

Out of bag error: 0.2487. Time taken to build model: 0.14 seconds

Correctly Classified Instances 292 76.4398 % (81.4 with AdaBoost)

Incorrectly Classified Instances 90 23.5602 %

Kappa statistic 0.5272

Mean absolute error 0.344

Root mean squared error 0.4069

Relative absolute error 68.9062 %

Root relative squared error 81.2679 %

Total Number of Instances 382

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.69 0.164 0.801 0.69 0.741 0.848 cal

0.836 0.31 0.738 0.836 0.784 0.848 dor

WAvg. 0.764 0.239 0.769 0.764 0.763 0.848

a b <-- classified as

129 58 | a = cal

32 163 | b = dor

More on Learning

• Neural Nets

• Support Vectors Machines

• Unsupervised Learning (Clustering)

– K-Means

– Expectation-Maximization

21

Neural Net Learning

• Motivated by studies of the brain.

• A network of “artificial neurons” that learns a function.

• Doesn’t have clear decision rules like decision trees,
but highly successful in many different applications.
(e.g. face detection)

• We use them frequently in our research.

• I’ll be using algorithms from

http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-
spring/lecture-slides/cs4811-neural-net-algorithms.pdf

http://www.cs.mtu.edu/~nilufer/classes/cs4811/2016-spring/lecture-slides/cs4811-neural-net-algorithms.pdf

Simple Feed-Forward

Perceptrons

x1

x2

W1

W2

g(in) out

in = (∑ Wj xj) +

out = g[in]

g is the activation function

It can be a step function:

g(x) = 1 if x >=0 and

0 (or -1) else.

It can be a sigmoid function:

g(x) = 1/(1+exp(-x)).

The sigmoid function is differentiable

and can be used in a gradient descent

algorithm to update the weights.

Gradient Descent
takes steps proportional to the negative of the gradient of a

function to find its local minimum

• Let X be the inputs, y the class, W the
weights

• in = ∑ Wj xj

• Err = y – g(in)

• E = ½ Err2 is the squared error to minimize

• E/Wj = Err * Err/Wj = Err * /Wj(g(in))(-1)

• = -Err * g’(in) * xj

• The update is Wj <- Wj + α * Err * g’(in) * xj

• α is called the learning rate.

Simple Feed-Forward

Perceptrons

x1

x2

W1

W2

g(in) out

repeat

for each e in examples do

in = (∑ Wj xj) +

Err = y[e] – g[in]

Wj = Wj + α Err g’(in) xj[e]

until done

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]

Initialization: W1 = 1, W2 = 2, = -2

Note1: when g is a step function, the g’(in) is removed.

Note2: later in back propagation, Err * g’(in) will be called

Note3: We’ll let g(x) = 1 if x >=0 else -1

Graphically
Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]

Initialization: W1 = 1, W2 = 2, = -2

W1

W2

A

CB

wrong

boundary

Boundary is W1x1 + W2x2 + = 0

Examples:

A=[(.5,1.5),+1],

B=[(-.5,.5),-1],

C=[(.5,.5),+1]

Initialization: W1 = 1, W2 = 2, = -2

A=[(.5,1.5),+1]

in = .5(1) + (1.5)(2) -2 = 1.5

g(in) = 1; Err = 0; NO CHANGE

B=[(-.5,.5),-1]

In = (-.5)(1) + (.5)(2) -2 = -1.5

g(in) = -1; Err = 0; NO

CHANGE

C=[(.5,.5),+1]

in = (.5)(1) + (.5)(2) – 2 = -.5

g(in) = -1; Err = 1-(-1)=2

Let α=.5

W1 <- W1 + .5(2) (.5) leaving out g’

<- 1 + 1(.5) = 1.5

W2 <- W2 + .5(2) (.5)

<- 2 + 1(.5) = 2.5

 <- + .5(+1 – (-1))

 <- -2 + .5(2) = -1

repeat

for each e in examples do

in = (∑ Wj xj) +

Err = y[e] – g[in]

Wj = Wj + α Err g’(in) xj[e]

until done

Learning

Graphically

Examples: A=[(.5,1.5),+1], B=[(-.5,.5),-1], C=[(.5,.5),+1]

Initialization: W1 = 1, W2 = 2, = -2

W1

W2

a

A

CB

wrong

boundary

Boundary is W1x1 + W2x2 + = 0

approximately correct boundary

Back Propagation

• Simple single layer networks with feed

forward learning were not powerful enough.

• Could only produce simple linear classifiers.

• More powerful networks have multiple hidden

layers.

• The learning algorithm is called back

propagation, because it computes the error at

the end and propagates it back through the

weights of the network to the beginning.

Let’s break it

into steps.

(slightly different from text)

Let’s dissect it.

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

Forward Computation

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

af

Backward Propagation 1

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

• Node nf is the only node in our output layer.

• Compute the error at that node and multiply by the

• derivative of the weighted input sum to get the

change delta.

Δf

Backward Propagation 2

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

• At each of the other layers, the deltas use

• the derivative of its input sum

• the sum of its output weights

• the delta computed for the output error

Δ1 g’(in1) w1f Δf

Δ2 g’(in2) w2f Δf

Backward Propagation 3

x1

x2

x3

n1

n2

layer 1 2 3=L

nf

w11

w21

w31

w1f

w2f

Now that all the deltas are defined, the weight updates just use them.

Back Propagation Summary

• Compute delta values for the output units

using observed errors.

• Starting at the output-1 layer

– repeat

• propagate delta values back to previous layer

• update weights between the two layers

– till done with all layers

• This is done for all examples and multiple

epochs, till convergence or enough iterations.

Time taken to build model: 16.2 seconds

Correctly Classified Instances 307 80.3665 % (did not boost)

Incorrectly Classified Instances 75 19.6335 %

Kappa statistic 0.6056

Mean absolute error 0.1982

Root mean squared error 0.41

Relative absolute error 39.7113 %

Root relative squared error 81.9006 %

Total Number of Instances 382

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.706 0.103 0.868 0.706 0.779 0.872 cal

0.897 0.294 0.761 0.897 0.824 0.872 dor

W Avg. 0.804 0.2 0.814 0.804 0.802 0.872

=== Confusion Matrix ===

a b <-- classified as

132 55 | a = cal

20 175 | b = dor

