Learning

Chapter 18 and Parts of Chapter 20

- Al systems are complex and may have many parameters.
- It is impractical and often impossible to encode all the knowledge a system needs.
- Different types of data may require very different parameters.
- Instead of trying to hard code all the knowledge, it makes sense to learn it.

Learning from Observations

 Supervised Learning – learn a function from a set of training examples which are preclassified feature vectors.

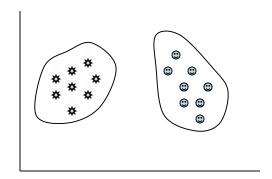
feature vector	class
(shape,color)	
(square, red)	I
(square, blue)	1
(circle, red)	II
(circle blue)	II
(triangle, red)	I
(triangle, green)	
(ellipse, blue)	II
(ellipse, red)	II

Given a previously unseen feature vector, what is the rule that tells us if it is in class I or class II?

```
(circle, green) ? (triangle, blue) ?
```


Real Observations

%Training set of Calenouria and Dorenouria


```
@DATA
```

```
0,1,1,0,0,0,0,0,0,1,1,2,3,0,1,2,0,0,0,0,0,0,0,0,0,1,0,0,1,
3,3,4,0,2,1,0,1,1,1,0,0,0,0,1,0,0,1,1,cal 0,1,0,0,0,1,0,0,0,4,1,2
,2,0,1,0,0,0,0,0,1,0,0,3,0,2,0,0,1,1,0,0,1,0,0,0,1,0,1,6,1,8,2,0,0,
0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,1,2,0,5,0,0,0,0,0,0,0,1,3,0,0,0,0
0,cal
0,0,1,0,1,0,0,1,0,1,0,0,1,0,3,0,1,0,0,2,0,0,0,0,1,3,0,0,0,0,0,0,1,0,
2,0,2,0,1,8,0,5,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,2,2,0,0,3,0,0,2,1,1,
5,0,0,0,2,1,3,2,0,1,0,0,cal 0,0,0,0,0,0,0,0,0,2,0,0,1,2,0,1,1,0,0,0,1
0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,3,0,0,4,1,8,0,0,0,1,0,0,0,0,0,1,0,1
,0,1,0,0,0,0,0,0,4,2,0,2,1,1,2,1,1,0,0,0,0,2,0,0,2,2,cal
```

. . .

Learning from Observations

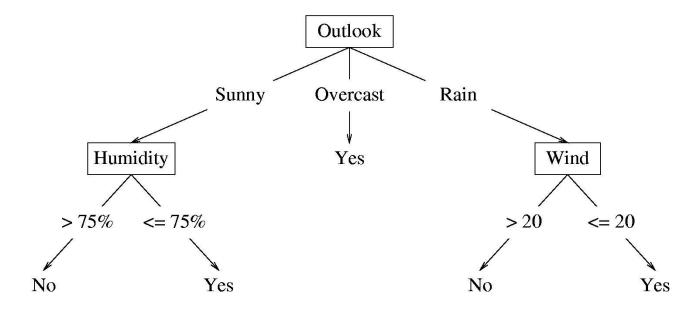
 Unsupervised Learning – No classes are given. The idea is to find patterns in the data. This generally involves clustering.

 Reinforcement Learning – learn from feedback after a decision is made.

Topics to Cover

- Inductive Learning
 - decision trees
 - ensembles
 - neural nets
 - kernel machines
- Unsupervised Learning
 - K-Means Clustering
 - Expectation Maximization (EM) algorithm

Decision Trees


Theory is well-understood.

Often used in pattern recognition problems.

 Has the nice property that you can easily understand the decision rule it has learned.

Decision Tree Hypothesis Space

If the features are continuous, internal nodes may test the value of a feature against a threshold.

Classic ML example: decision tree for "Shall I play tennis today?"

from Tom Mitchell's ML book

A Real Decision Tree (WEKA)

```
Calenouria
part23 < 0.5
  part29 < 3.5
     part34 < 0.5
       part8 < 2.5
          part2 < 0.5
            part63 < 3.5
                                                           Dorenouria
               part20 < 1.5 : dor (53/12) [25/8]
               part20 >= 1.5
                  part37 < 2.5 : cal (6/0) [5/2] \leftarrow
                  part37 >= 2.5: dor (3/1) [2/0]
            part63 >= 3.5 : dor (14/0) [3/0]
          part2 >= 0.5 : cal (21/8) [10/4]
       part8 >= 2.5: dor (14/0) [14/0]
     part34 >= 0.5 : cal (38/12) [18/4]
  part29 >= 3.5 : dor (32/0) [10/2]
part23 >= 0.5
  part29 < 7.5 : cal (66/8) [35/12]
  part29 >= 7.5
     part24 < 5.5: dor (9/0) [4/0]
     part24 >= 5.5 : cal (4/0) [4/0]
```

Evaluation

Correctly Classified Instances	281	73.5602 %
Incorrectly Classified Instances	101	26.4398 %
Kappa statistic	0.4718	
Mean absolute error	0.3493	
Root mean squared error	0.4545	
Relative absolute error	69.973 %	
Root relative squared error	90.7886 %	
Total Number of Instances	382	

=== Detailed Accuracy By Class ===

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.77	0.297	0.713	0.77	0.74	0.747	cal
	0.703	0.23	0.761	0.703	0.731	0.747	dor
Wg Avg.	0.736	0.263	0.737	0.736	0.735	0.747	

=== Confusion Matrix ===

a b <-- classified as 144 43 | a = cal 58 137 | b = dor Precision = TP/(TP+FP)

Recall = TP/(TP+FN)

F-Measure = 2 x Precision x Recall

Precision + Recall

Properties of Decision Trees

- They divide the decision space into axis parallel rectangles and label each rectangle as one of the k classes.
- They can represent Boolean functions.
- They are variable size and deterministic.
- They can represent discrete or continuous parameters.
- They can be learned from training data.

Learning Algorithm for Decision Trees

```
Growtree(S) /* Binary version */

if (y==0 for all (\mathbf{x},y) in S) return newleaf(0)

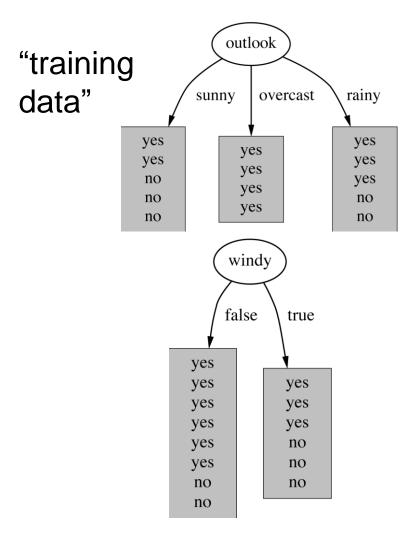
else if (y==1 for all (\mathbf{x},y) in S) return newleaf(1)

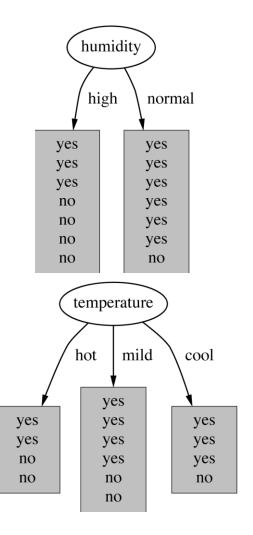
else

choose best attribute x_j

S_0 = (x,y) with x_j = 0

S_1 = (x,y) with x_j = 1

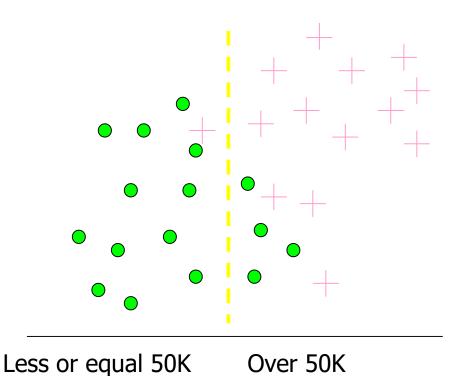

return new node(x_j, Growtree(S_0), Growtree(S_1))


end
```

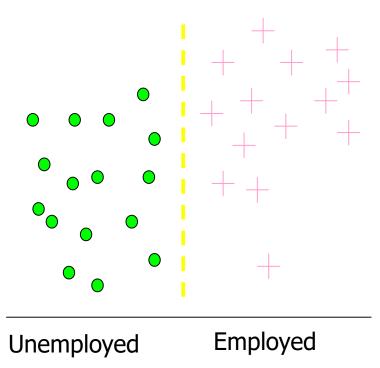
How do we choose the best attribute?

What should that attribute do for us?

Shall I play tennis today? Which attribute should be selected?

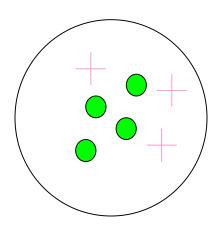

Criterion for attribute selection

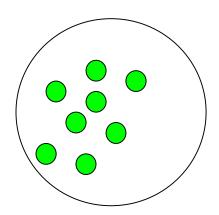
- Which is the best attribute?
 - The one that will result in the smallest tree
 - Heuristic: choose the attribute that produces the "purest" nodes
- Need a good measure of purity!
 - Maximal when?
 - Minimal when?


Information Gain

Which test is more informative?

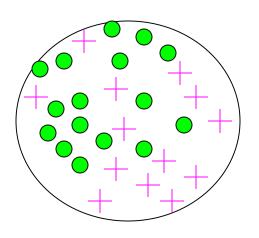
Split over whether Balance exceeds 50K

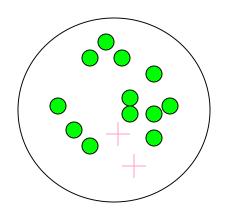

Split over whether applicant is employed



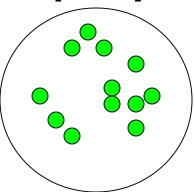
Information Gain

Impurity/Entropy (informal)

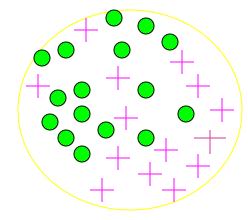

Measures the level of impurity in a group of examples



Impurity


Very impure group

Less impure



Minimum impurity

Entropy: a common way to measure impurity

• Entropy = $\sum_{i} -p_{i} \log_{2} p_{i}$

p_i is the probability of class i

Compute it as the proportion of class i in the set.

```
16/30 are green circles; 14/30 are pink crosses log_2(16/30) = -.9; log_2(14/30) = -1.1
Entropy = -(16/30)(-.9) - (14/30)(-1.1) = .99
```

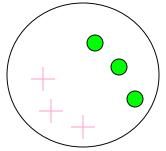
 Entropy comes from information theory. The higher the entropy the more the information content.

What does that mean for learning from examples?

2-Class Cases:

- What is the entropy of a group in which all examples belong to the same class?
 - entropy = $-1 \log_2 1 = 0$

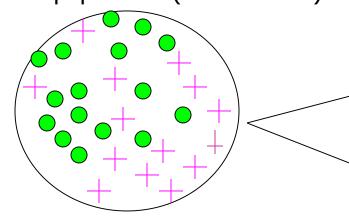
not a good training set for learning



$$-$$
 entropy = -0.5 $log_2 0.5 - 0.5 log_2 0.5 = 1$

good training set for learning

Information Gain


- We want to determine which attribute in a given set of training feature vectors is most useful for discriminating between the classes to be learned.
- Information gain tells us how important a given attribute of the feature vectors is.
- We will use it to decide the ordering of attributes in the nodes of a decision tree.

Calculating Information Gain

Information Gain = entropy(parent) – [average entropy(children)]

Entire population (30 instances)

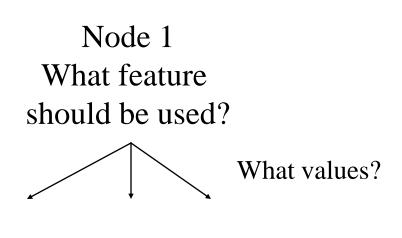
child entropy
$$-\left(\frac{1}{13} \cdot \log_2 \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log_2 \frac{12}{13}\right) = 0.391$$

(Weighted) Average Entropy of Children =

$$\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$$

Information Gain =
$$0.996 - 0.615 = 0.38$$
 for this split

13 instances


17 instances

Entropy-Based Automatic Decision Tree Construction

Training Set S
$$x_{1}=(f_{11},f_{12},...f_{1m})$$

$$x_{2}=(f_{21},f_{22}, f_{2m})$$

$$x_{n}=(f_{n1},f_{22}, f_{2m})$$

Quinlan suggested information gain in his ID3 system and later the gain ratio, both based on entropy.

Using Information Gain to Construct a **Decision Tree**

Full Training Set S

Attribute A

Construct child nodes for each value of A. Set S' Each has an associated subset of vectors in which A has a particular value.

vk

$$S' = \{s \in S \mid value(A) = v1\}$$

Choose the attribute A

with highest information

gain for the full training

set at the root of the tree.

3 repeat recursively till when?

Simple Example

Training Set: 3 features and 2 classes

X	Y	Z	C
1	1	1	I
1	1	0	I
0	0	1	II
1	0	0	II

How would you distinguish class I from class II?

X	Y	Z	C
1	1	1	I
1	1	0	I
0	0	1	II
1	0	0	II

Eparent= 1
Split on attribute X

X=1 (II)
II II
X=0 (II)

If X is the best attribute, this node would be further split.

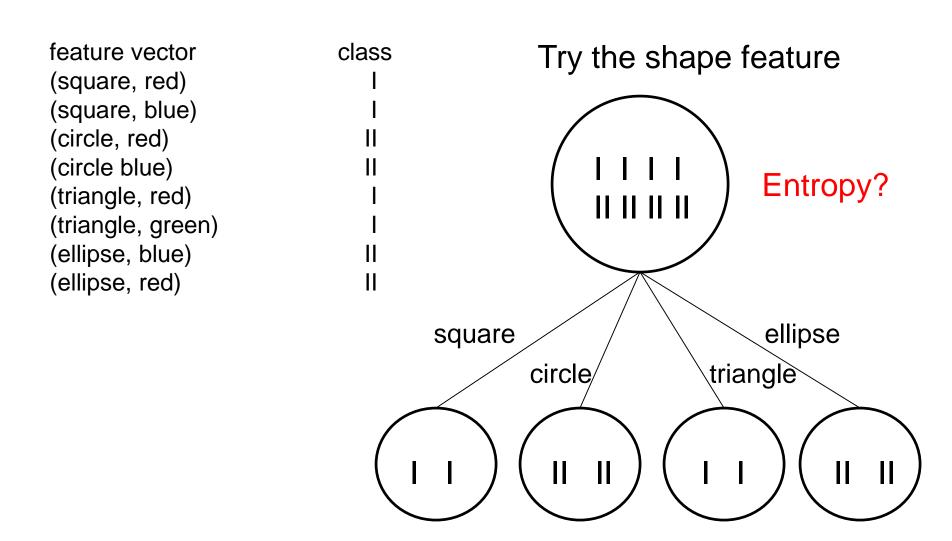
$$E_{child1} = -(1/3)log_2(1/3)-(2/3)log_2(2/3)$$

= .5284 + .39
= .9184

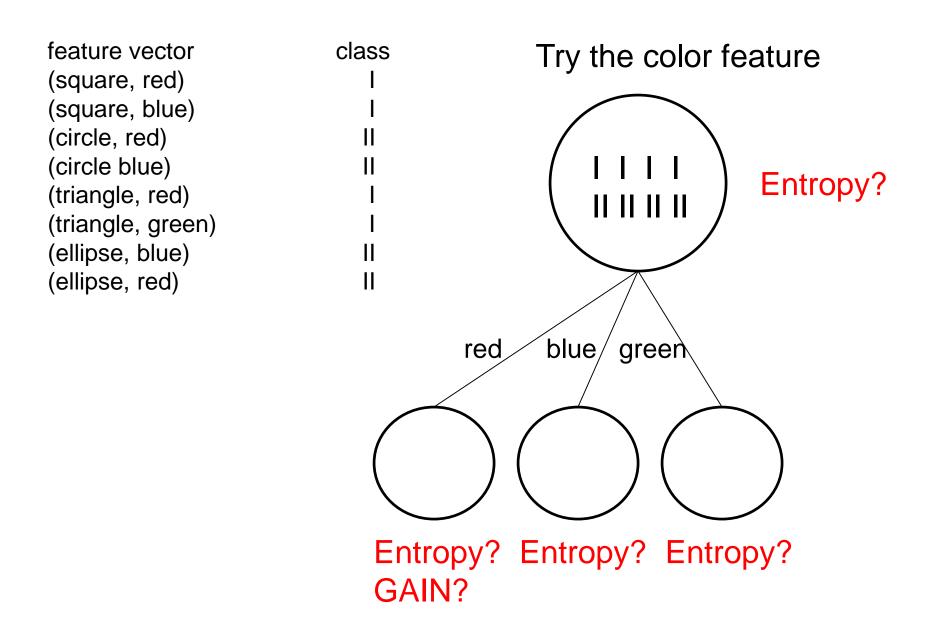
$$E_{child2} = 0$$

GAIN = 1 - (3/4)(.9184) - (1/4)(0) = .3112

Eparent= 1
Split on attribute Y


$$Y=1$$
 $E_{child1}=0$ $E_{child2}=0$ $E_{child2}=0$ $E_{child2}=0$ $E_{child2}=0$ $E_{child2}=0$ $E_{child2}=0$

Eparent= 1 Split on attribute Z


$$Z=1 \qquad I \qquad E_{child1}=1$$

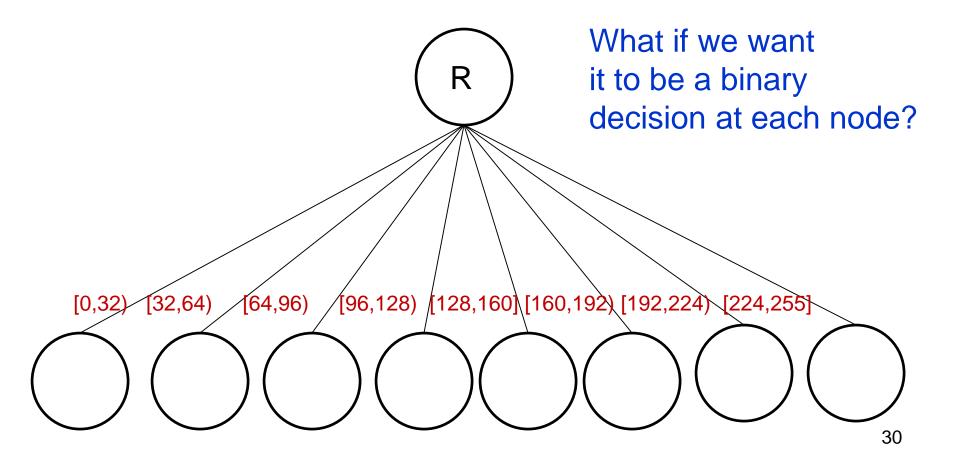
$$II \qquad II \qquad E_{child2}=1$$

GAIN = 1 - (1/2)(1) - (1/2)(1) = 0 ie. NO GAIN; WORST

Entropy? Entropy? Entropy? GAIN?

Many-Valued Features

 Your features might have a large number of discrete values.


Example: pixels in an image have (R,G,B) which are each integers between 0 and 255.

Your features might have continuous values.

Example: from pixel values, we compute gradient magnitude, a continuous feature

One Solution to Both

We often group the values into bins

Training and Testing

- Divide data into a training set and a separate testing set.
- Construct the decision tree using the training set only.
- Test the decision tree on the training set to see how it's doing.
- Test the decision tree on the testing set to report its real performance.

Measuring Performance

- Given a test set of labeled feature vectors
 e.g. (square,red) I
- Run each feature vector through the decision tree
- Suppose the decision tree says it belongs to class X and the real label is Y
- If (X=Y) that's a correct classification
- If (X<>Y) that's an error

Measuring Performance

 In a 2-class problem, where the classes are positive or negative (ie. for cancer)

```
– # true positivesTP
```

- Accuracy = #correct / #total = (TP +TN) / (TP + TN + FP + FN)
- Precision = TP / (TP + FP)

How many of the ones you said were cancer really were cancer?

Recall = TP / (TP + FN)

How many of the ones who had cancer did you call cancer?

More Measures

F-Measure = 2*(Precision * Recall) / (Precision + Recall)

Gives us a single number to represent both precision and recall.

In medicine:

Sensitivity = TP / (TP + FN) = Recall

The sensitivity of a test is the proportion of people who have a disease who test positive for it.

Specificity = TN / (TN + FP)

The specificity of a test is the number of people who DON'T have a disease who test negative for it.

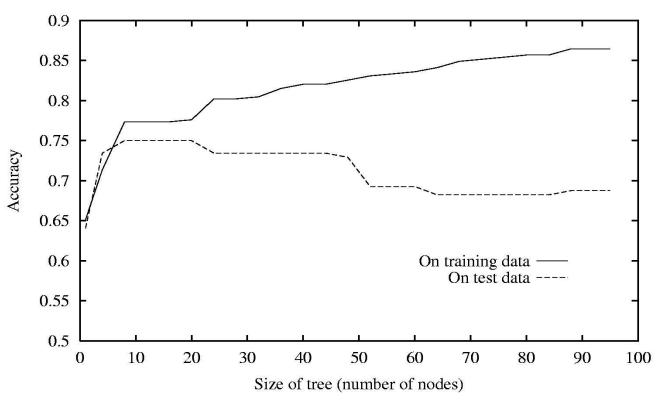
Measuring Performance

 For multi-class problems, we often look at the confusion matrix.

assigned class

true class

	Α	В	С	D	Е	F	G
Α							
В							
С							
D							
E							
F							
G							

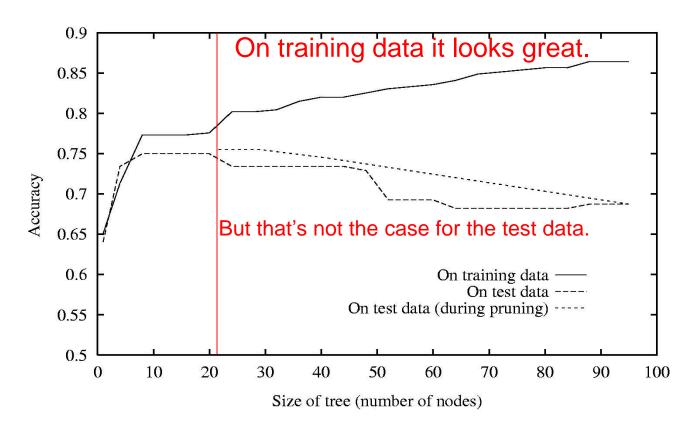

C(i,j) = number of times (or percentage) class i is given label j.

Overfitting

- Suppose the classifier h has error (1accuracy) of error_{train}(h)
- And there is an alternate classifier (hypothesis) h' that has error_{train}(h')
- What if error_{train}(h) < error_{train}(h')
- But error_D(h) > error_D(h') for full set D
- Then we say h overfits the training data

What happens as the decision tree gets bigger and bigger?

Overfitting in Decision Tree Learning



Error on training data goes down, on testing data goes up

Reduced Error Pruning

- Split data into training and validation sets
- Do until further pruning is harmful
 - 1. Evaluate impact on validation set of pruning each possible node (and its subtree)
 - 2. Greedily remove the one that most improves validation set accuracy
- Then you need an additional independent testing set.

Effect of Reduced-Error Pruning

The tree is pruned back to the red line where it gives more accurate results on the test data.

- The WEKA example with Calenouria and Dorenouria
 I showed you used the REPTree classifier with 21 nodes.
- The classic decision tree for the same data had 65 nodes.
- Performance was similar for our test set.
- Performance increased using a random forest of 10 trees, each constructed with 7 random features.

Decision Trees: Summary

- Representation=decision trees
- Bias=preference for small decision trees
- Search algorithm=none
- Heuristic function=information gain or information content or others
- Overfitting and pruning
- Advantage is simplicity and easy conversion to rules.