## Large Language Models

Generating (Useful) Text from Models We Don't Fully Understand

## Ari Holtzman

(and thanks to Luke Zettlemoyer and Sewon Min for many slides!)

WOF COMPUTER SCIENCE \& ENGINEERING


## Language Modeling 101

## Language Modeling 101

-Large Neural Networks (109 parameters is a minimum for many tasks!)

## Language Modeling 101

-Large Neural Networks (109 parameters is a minimum for many tasks!)
-Trained to predict the probability of the next token given context

## Language Modeling 101

-Large Neural Networks (109 parameters is a minimum for many tasks!)
-Trained to predict the probability of the next token given context
-From a fixed vocabulary of tokens, i.e. words and pieces of words

## Language Modeling 101

-Large Neural Networks (109 parameters is a minimum for many tasks!)
-Trained to predict the probability of the next token given context
-From a fixed vocabulary of tokens, i.e. words and pieces of words

$$
\begin{array}{ll}
\text { Tokens } & \text { Characters } \\
11 & 35
\end{array}
$$

supercallifragilisticexpialidocious

## Language Modeling 101

-Large Neural Networks (109 parameters is a minimum for many tasks!)
-Trained to predict the probability of the next token given context
-From a fixed vocabulary of tokens, i.e. words and pieces of words

$$
\begin{gathered}
P\left(w_{i} \mid w_{1} \cdots w_{i-1}\right) \\
w_{k} \in \mathbf{V}, \forall k
\end{gathered}
$$

## we want the model

to predict this
$\downarrow$

## Training example: I saw a cat on a mat <eos>

Model prediction: p(*|I saw a) Target

$$
\text { Loss }=-\log (p(c a t)) \rightarrow \min
$$



If I have 17 apples and I give you five then I have 12 apples.

## apples $=35.18 \%$

. $=25.96 \%$
, = 9.92\%
left $=5.20 \%$
and $=2.59 \%$

$$
P\left(w_{i} \mid w_{1} \cdots w_{i-1}\right)
$$

$$
P\left(w_{i} \mid w_{1} \cdots w_{i-1}\right)
$$

$$
P\left(w_{1} \cdots w_{n}\right)=\prod_{i}^{n} P\left(w_{i} \mid w_{1} \cdots w_{i-1}\right)
$$

## $S=\underbrace{\text { Where are we going }}_{\uparrow}$ <br> Previous words (Context) <br> Word being predicted

$P(S)=P($ Where $) \times P($ are | Where $) \times P($ we | Where are $) \times P($ going | Where are we $)$

## The Text Generation Revolution: Four Years In

## Better Language Models and Their Implications

We've trained a large-scale unsupervised language model which generates coherent paragraphs of text, achieves state-of-the-art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization-all without task-specific training.


SYSTEM PROMPT (HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

MODEL
COMPLETION
(MACHINEWRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.


Artificial Neuron Interactions


Language Model Behavior


Artificial Neuron Interactions

Language Model Behavior



Why 2019?



Feed-forward network: after taking information from other tokens, take a moment to think and process this information


Feed-forward network: after taking information from other tokens, take a moment to think and process this information
$\uparrow$

## Decoder-encoder attention:

 target token looks at the source queries - from decoder states; keys and values from encoder statesEncoder self-attention: tokens look at each other
queries, keys, values are computed from encoder states



## Generative Pre-Training

## Generative Pre-Training

- Literally indicates "training by predicting documents, word-by-word"


## Generative Pre-Training

- Literally indicates "training by predicting documents, word-by-word"
- Turns out this works much better than lots of more complex methods


## Generative Pre-Training

- Literally indicates "training by predicting documents, word-by-word"
- Turns out this works much better than lots of more complex methods
- Teaches the model how to generate lots of different kinds of texts


## Transformer Language Models

## Transformer Language Models

- E.g: GPT-X, OPT, and many others


## Transformer Language Models

- E.g: GPT-X, OPT, and many others
- Self supervision: given prefix predict next token


## Transformer Language Models

- E.g: GPT-X, OPT, and many others
- Self supervision: given prefix predict next token
- Train on up to a trillion tokens


## Transformer Language Models

- E.g: GPT-X, OPT, and many others
- Self supervision: given prefix predict next token
- Train on up to a trillion tokens
- Very large: commonly 100B+ parameters


Prompting

## Prompting

Rude response: "I hate this"
Polite response:

## Prompting

Rude response: "I hate this"
Polite response:

## Prompting

Rude response: "I hate this"
Polite response:

## Prompting

Rude response: "I hate this"
Polite response:"I'm not sure I like this"

## Prompting: string completion is a universal interface!

Zero-shot
The model predicts the answer given only a natural language description of the task. No gradient updates are performed.
Translate English to French: $\longleftarrow_{\text {task description }}$
cheese $=>$

## Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche
cheese =>
```

prompt

This is an advanced prompt for detecting sentiment. It allows you to provide it with a list of status updates and then provide a sentiment for each one.

Prompt
Classify the sentiment in these tweets:

1. "I can't stand homework"
. "This sucks. I' m bored (0)"
2. "My cat is adorable $\cap$ "
3. "I hate chocolate"

Tweet sentiment ratings:

Sample response

1. Negative
2. Negative
3. Negative
4. Positive
5. Positive
6. Negative

L;DR summarization
Transformation Generation

Summarize text by adding a ' $t \mid$;dr:' to the end of a text passage. It shows that the API understands how to perform a number of tasks with no instructions.

## Prompt

A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich.[1] Neutron stars are the smallest and densest stellar objects, excluding black holes and hypothetical white holes, quark stars, and strange stars.[2] Neutron stars have a radius on 31) They result fromerres $(0.2 \mathrm{~m}$ ) and a mass of about 1.4 solar ${ }^{[3]}$ They white dwarf star density to that of atomic nuclel.

Ti;dr

Sample response
neutron star is the collapsed core of a massive supergiant star. Thes ultra-dense objects are incredibly fascinating due to their strange properties and their potential for phenomena such as extreme gravitational forces and a strong magnetic field.

Prompting is brittle but works better with LLMs (>100B params)

## What are they good for?

## What are they good for?

- Summarizing text (articles, papers, etc.)


## What are they good for?

- Summarizing text (articles, papers, etc.)
- Writing helper (rewording, editing, etc.)


## What are they good for?

- Summarizing text (articles, papers, etc.)
- Writing helper (rewording, editing, etc.)
- Writing Code (e.g. Copilot by Github is used for autocompletion)


## What are they good for?

- Summarizing text (articles, papers, etc.)
- Writing helper (rewording, editing, etc.)
- Writing Code (e.g. Copilot by Github is used for autocompletion)
- Many other things...
\# A function that checks whether $n$ is prime and $n+1$ is divisible by 3

```
# A function that checks whether n is prime and n+1 is divisible by 3
def check prime(n):
    if is_prime(n) and (n+1)%3 == 0:
    return True
    else:
    return False
```


## Prompt Engineering

## Prompt Engineering

- Trying to figure out the exact right question to get the right answer out of the model


## Prompt Engineering

- Trying to figure out the exact right question to get the right answer out of the model
- Why does this work?


## Prompt Engineering

- Trying to figure out the exact right question to get the right answer out of the model
- Why does this work?
- The model learns the semantics of document completion


## Prompt Engineering

- Trying to figure out the exact right question to get the right answer out of the model
- Why does this work?
- The model learns the semantics of document completion
- So we have to backwards engineer what kind of documents would lead to the desired behavior!

What's $2+2$ ?

What's 2+2?

What's 2+2?

What's 2+2?

What's 2+2?

What's 2+2?

## VS.

What's 2+2?

What's 2+2?

What's 2+2?

What's 2+2?

## Q: What's 2+2?

VS.
What's $2+2$ ?
A: Four.

What's 2+2?

"Language Models are Few-Shot Learners" Brown et al., 2020

## In-Context Learning

## In-Context Learning (ICL)

input: $2+2$
output: 4
input: 4 * 5
output: 20
input: 6 / 3
output:

## In-Context Learning (ICL)

input: $2+2$
output: 4
input: 4 * 5
output: 20
input: 6 / 3
output: 2

## How does In-context Learning Work?

## How does In-context Learning Work?

Circulation revenue has increased by 5\% in Finland.
Panostaja did not disclose the purchase price.
Paying off the national debt will be extremely painful. In Negative
The company anticipated its operating profit to improve. In $\qquad$ _

## How does In-context Learning Work?



## How does In-context Learning Work?

## Demonstrations

| Circulation revenue has increased by 5\% in Finland. | In Positive |  |
| :--- | :---: | :---: | :---: |
| Panostaja did not disclose the purchase price. | In Neutral |  |
| Paying off the national debt will be extremely painful. | In | Negative |

The company anticipated its operating profit to improve. In


## How does In-context Learning Work?

## Demonstrations


"What happens if we replace gold labels with random labels?"



Significant improvements through demonstrations

Classification



Replacing gold labels with random labels barely hurts the performance

## Instruction Tuning

## Instruction Tuning



## Instruction Tuning




| Translation |
| :---: |
| (8 datasets) |
| ParaGraw ENDE |
| ParaCraw ENES |
| ParaCraw ENFR |
| WMT-16 EN/CS |
| WMT-16 ENDE |
| WMT-16 ENFI |
| WMT-16 ENIRO |
| WMT-16 ENRU |
| WMT-16 EN/TR |

## Instruction Tuning

## Instruction Tuning

- Essentially, fine-tune language models (keep training them) on instructions


## Instruction Tuning

- Essentially, fine-tune language models (keep training them) on instructions
- This teaches models to follow instructions


## Instruction Tuning

- Essentially, fine-tune language models (keep training them) on instructions
- This teaches models to follow instructions
- The more diverse and high-quality the instructions, the better the model learns to follow instructions

Please write me a joke to tell when explaining Language Models during a class lecture.

Please write me a joke to tell when explaining Language Models during a class lecture.

Q: What did the computer say when it was asked to generate a sentence?
A: Let me think... I'm at a loss for words!

## The Cross-Entropy Loss Function

## The Cross-Entropy Loss Function

- To optimize neural networks (e.g., language models) we use a loss function


## The Cross-Entropy Loss Function

- To optimize neural networks (e.g., language models) we use a loss function
- Loss functions are used to compare output generated by a neural network and desired output, allowing the model to learn


## The Cross-Entropy Loss Function

- To optimize neural networks (e.g., language models) we use a loss function
- Loss functions are used to compare output generated by a neural network and desired output, allowing the model to learn
- The higher the value of the loss function, the worse the model is considered to be at modeling the data


## The Cross-Entropy Loss Function

- To optimize neural networks (e.g., language models) we use a loss function
- Loss functions are used to compare output generated by a neural network and desired output, allowing the model to learn
- The higher the value of the loss function, the worse the model is considered to be at modeling the data
- Language models use the cross-entropy loss function:

$$
-\log P\left(w_{i} \mid w_{1} \cdots w_{i-1}\right)
$$

Which situation makes more sense a dog on a couch or a couch on a dog?

Neither situation makes sense.

Which situation makes more sense a dog on a couch or a couch on a dog?

Neither situation makes sense.

## VS.

Which situation makes more sense, a dog on a couch or a couch on a dog?

A dog on a couch makes more sense.

Which situation makes more sense a dog on a couch or a couch on a dog?

Neither situation makes sense.

## VS.

Which situation makes more sens甶a dog on a couch or a couch on a dog?

A dog on a couch makes more sense.

## Size matters (but there are nuances)



From BigBench paper

## Size matters (but there are nuances)

Performance on JSON tasks

(b) Effective parameter count

- More training compute generally == better performance

From BigBench paper

## Size matters (but there are nuances)

Performance on JSON tasks

(b) Effective parameter count

- More training compute generally == better performance
- More params for same data generally == better performance (but we don't know the limits/ some benchmarks saturate)

From BigBench paper

## Size matters (but there are nuances)

Performance on JSON tasks

(b) Effective parameter count

- More training compute generally $==$ better performance
- More params for same data generally == better performance (but we don't know the limits/ some benchmarks saturate)
- More data for the same params generally == better performance

From BigBench paper

## Size matters (but there are nuances)

Performance on JSON tasks

(b) Effective parameter count

- More training compute generally $==$ better performance
- More params for same data generally == better performance (but we don't know the limits/ some benchmarks saturate)
- More data for the same params generally == better performance
- There are "scaling laws" (e.g. the Chinchilla paper) with data X param size rules, but unclear how well these generalize to different datasets.

From BigBench paper

ChatGPT

## How to train ChatGPT

## Step 1

Collect demonstration data, and train a supervised policy.

A prompt is
sampled from our prompt dataset.
people went
to the moon..

## A labeler

demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2
Collect comparison data,
and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.


Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy
generates an output.

The reward model calculates a
reward for
the output.
The reward is used to update
the policy
using PPO.

3n
Write a story about frogs

## $\nabla$


$\nabla$
Once upon a time

$\nabla$
$r_{k}$

## Lots of unknowns...

## Lots of unknowns...

- Which base GPT model did they use? "GPT 3.5"


## Lots of unknowns...

- Which base GPT model did they use? "GPT 3.5"
- GPT 3.5, which is probably a distilled version of GPT4


## Lots of unknowns...

- Which base GPT model did they use? "GPT 3.5"
- GPT 3.5, which is probably a distilled version of GPT4
- GPT4 is rumored to be much better than Chat GPT, but too expensive to serve


## Lots of unknowns...

- Which base GPT model did they use? "GPT 3.5"
- GPT 3.5, which is probably a distilled version of GPT4
- GPT4 is rumored to be much better than Chat GPT, but too expensive to serve
- GPT5 is supposedly training now, with focus on inference efficiency


## Lots of unknowns...

- Which base GPT model did they use? "GPT 3.5"
- GPT 3.5 , which is probably a distilled version of GPT4
- GPT4 is rumored to be much better than Chat GPT, but too expensive to serve
- GPT5 is supposedly training now, with focus on inference efficiency
- How much data was needed at each stage?


## Lots of unknowns...

- Which base GPT model did they use? "GPT 3.5"
- GPT 3.5 , which is probably a distilled version of GPT4
- GPT4 is rumored to be much better than Chat GPT, but too expensive to serve
- GPT5 is supposedly training now, with focus on inference efficiency
- How much data was needed at each stage?
- Companies have become very secretive about data...


## Lots of unknowns...

- Which base GPT model did they use? "GPT 3.5"
- GPT 3.5 , which is probably a distilled version of GPT4
- GPT4 is rumored to be much better than Chat GPT, but too expensive to serve
- GPT5 is supposedly training now, with focus on inference efficiency
- How much data was needed at each stage?
- Companies have become very secretive about data...
- Limited access / hard to carefully measure progress


## Lots of unknowns...

- Which base GPT model did they use? "GPT 3.5"
- GPT 3.5 , which is probably a distilled version of GPT4
- GPT4 is rumored to be much better than Chat GPT, but too expensive to serve
- GPT5 is supposedly training now, with focus on inference efficiency
- How much data was needed at each stage?
- Companies have become very secretive about data...
- Limited access / hard to carefully measure progress
- OpenAl and others won't even confirm what the model sizes are...


## Lots of unknowns...

- Which base GPT model did they use? "GPT 3.5"
- GPT 3.5 , which is probably a distilled version of GPT4
- GPT4 is rumored to be much better than Chat GPT, but too expensive to serve
- GPT5 is supposedly training now, with focus on inference efficiency
- How much data was needed at each stage?
- Companies have become very secretive about data...
- Limited access / hard to carefully measure progress
- OpenAl and others won't even confirm what the model sizes are...
- No held our data when trained on the entire internet, every query to the API, etc.


## The ChatGPT hype is big, lots of startups/tools already

## $\chi$ Cool Tools

- Give me a gift - Al-powered gift ideas. (link)
- Multi-flow - create, deploy, and iterate on workflows powered by generative models. (link)
- A really simple Chrome Extension that you can access OpenAl's ChatGPT from anywhere on the web. (link) Available on the Chrome Store here
- Baith AI - a simple app that uses the power of artificial intelligence to transform your interior. (link)
- Consensus - Al-powered, evidence-based search. (link)
- AskAlfred is a chrome extension that gives you GPT's second opinion alongside your google searches. (link)
- Chrome Extension that Integrates ChatGPT (Unofficial) into Google Search (link)
- Let GPT-3 answer questions using Google for you. (link)
- A browser extension to display ChatGPT response alongside Google Search results. (link)
- A ChatGPT Telegram Bot which can also draw using Stable Diffusion/DALLE (link)
- Run your own GPTChat Telegram bot, with a single command. (link)
- WebGPT Mini - GPT-powered chatbot that can search Google, built on Replit (link)
- Paraphrase AI - a simple app that is using GPT-3 to paraphrase and tweak great headlines. (link)
- Hilbert - automate interviews in minutes. (link)
- Perfect Cover Letter - Al-powered cover letter bot. (link)
- Elai.io - Generate narrated AI videos just from the link to an article. (link)
- A VSCode extension that allows you to use ChatGPT. (link)


## 1M+ DAU in 5 days; OpenAl is

 collecting all the data to build a bigger data moat and better models
## * Cool Tools

- CookupAI - No-code AI app builder. (link)
- ShowGPT - A collection of ChatGPT prompts. (link)
- Postedby.ai - Create personalised postcards using AI. (link)
- Pitch Mini Yohei - a bot that collects basic data from founders. (link)
- A browser extension that augments your ChatGPT prompts with web results. (link)
- ChatGPT for Mac, living in your menubar. (link)
- A curated list of awesome tools, demos, docs for ChatGPT and GPT-3. (link)
- ChatGPT directly within Google Docs as an Editor Add-on. (link)
- KrishnAI - a natural language interface built on top of GPT and an in-house context engine based on Puranas. (link)
- Perplexity - GPT web search. (link)
- Neeva - revolutionising search with an ad-free, privacy-first model. (link)

From Ben's Bites newsletter; This Week in NLP also covers startup trends.

## Also many startups/consortiums building their own LLMs

- Character.AI
- Anthropic
- Cohere
- Adept
- A121
- Stability.ai
- CarperAI
- EleutherAI
- HuggingFace/BigScience

> Many of these are well funded, have senior researchers from FAIR and Google Brain /
> DeepMind

## Limitations...

## Limitations of LLMs

- Bias, hate speech, and safety



## Limitations of LLMs

- Bias, hate speech, and safety
- Hallucinations and factual correctness


## Stack Overflow temporarily bans answers from OpenAl's ChatGPT chatbot

The Q\&A site has been flooded with ChatGPT coding answers that look correct but often aren't, with moderators calling for a halt.

## Limitations of LLMs

- Bias, hate speech, and safety
- Hallucinations and factual correctness
- Data ownership and privacy


## The lawsuit that could rewrite the rules of Al copyright

"We demonstrate our attack on GPT-2... and are able to extract hundreds of verbatim text sequences from the model's training data. These extracted examples include (public) personally identifiable information (names, phone numbers, and email addresses), IRC conversations, code, and 128-bit UUIDs."
Carlini, et al., "Extracting Training Data from Large Language Models" (2021)

Codex (but many LLMs use Github training data)


Demo time!

## Questions?

## Ari Holtzman

## ariholtzman.com

## Thank you for coming!

