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Examples

"Explain quantum computing in
simple terms” —

"Got any creative ideas for a 10
year old’s birthday?" —

"How do | make an HTTP request
in Javascript?” —

ChatGPT

4

Capabilities

Remembers what user said
earlier in the conversation

Allows user to provide follow-up
corrections

Trained to decline inappropriate
requests

AN

Limitations

May occasionally generate
incorrect information

May occasionally produce
harmful instructions or biased
content

Limited knowledge of world and
events after 2021
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|_arge Neural Networks (10° parameters is a minimum for many tasks!)
*Trained to predict the probability of the next token given context
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Language Modeling 101

|_arge Neural Networks (10° parameters is a minimum for many tasks!)
*Trained to predict the probability of the next token given context
‘From a fixed vocabulary of tokens, i.e. words and pieces of words
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we want the model
to predict this

l

Training example: I saw a cat on a mat <ecos>

Model prediction: p(*|I saw a) Target Loss =-log (p(cat)) = min
- 0 — ]
C ] 0 1 |[decrease
] 0 1 |
] < cat —> [1 ] increase
— o —
0 X d decrease
L] 0
- X [

https://lena-voita.github.io/nlp_course/language_modeling.html



If I have 17 apples and I give you five then I have 12 apples. ¢

U

apples = 35.18%

.= 2596%
., =992%

. left = 5.20%
o &
and = 2.59%
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S = Where are we going
| |

1

Previous words wWord being
(Context) predicted

P(S) = P(Where) x P(are | Where) x P(we | Where are) x P(going | Where are we)

https://thegradient.pub/understanding-evaluation-metrics-for-language-models/



The Text Generation Revolution:
Four Years In
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SYSTEM PROMPT
(HUMAN-WRITTEN)

MODEL

COMPLETION
(MACHINE-
WRITTEN, 10 TRIES)

In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains.
Even more surprising to the researchers was the fact that the
unicorns spoke perfect English.

The scientist named the population, after their distinctive

horn, Ovid’'s Unicorn. These four-horned, silver-white unicorns
were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked
this odd phenomenon 1s finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University
of La Paz, and several companions, were exploring the Andes
Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to

be a natural fountain, surrounded by two peaks of rock and
silver snow.
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Feed-forwarc

after taking infor
other tokens, take a moment to
think and process this information

Encoder se

tokens look at each other

queries, keys, values
are computed from
encoder states
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Feed-forward network:

after taking information from

other tokens, take a moment to
think and process this information

T

Decoder-encoder attention:
target token looks at the source

queries — from decoder states; keys
and values from encoder states

T

Decoder self-attention (masked):
tokens look at the previous tokens

queries, keys, values are computed
from decoder states
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Generative Pre-Training

® |iterally indicates “training by predicting documents, word-by-word”
® Turns out this works much better than lots of more complex methods

® Teaches the model how to generate lots of ditfferent kinds of texts
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Transformer Language Models

e E.g: GPT-X, OPT, and many others

e Self supervision: given prefix predict next token
e [rain on up to a trillion tokens

e \Very large: commonly 100B+ parameters
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Rude response: "l hate this’
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Prompting

Rude response: "l hate this’

"I'm not sure | like this"

Polite response:




Prompting:. string completion is a universal interface!

TL;DR summarization
Advanced tweet classifier
Zero-shot

Transformation Generation

Classification

The model predicts the answer given only a natural language

d Ipti fth k. N dient updat f d This is an advanced prompt for detecting sentiment. It allows you Summarize text by adding a 'tl;dr:' to the end of a text passage. It
escrlptlon Ol the task. No At HPUSRES Qe BCTIONTICS. to provide it with a Ii:t of sF:atus updatesgand then pfovidea / shows that the API understands how to perform a number of tasks
sentiment for each one. with no instructions.
Translate English to French: task description Promet Prompt
cheese => prompt

Classify the sentiment in these tweets: A neutron star is the collapsed core of a massive supergiant star, which

had a total mass of between 10 and 25 solar masses, possibly more if

1."I can't stand homework" the star was especially metal-rich.[1] Neutron stars are the smallest and

z ::Th's B LI oS densest stellar objects, excluding black holes and hypothetical white
2 asir;: I‘:Z‘;L‘:;;Z'g“’s?m holes, quark stars, and strange stars.[2] Neutron stars have a radius on
5. "I hate chocolate” the order of 10 kilometres (6.2 mi) and a mass of about 1.4 solar masses.
[3] They result from the supernova explosion of a massive star,
FeW'ShOt Tweet sentiment ratings: combined with gravitational collapse, that compresses the core past

white dwarf star density to that of atomic nuclei.

In addition to the task description, the model sees a few

Sample response Thar
examples of the task. No gradient updates are performed.

1. Negative

2. Negative Sample response

3. Positive
Translate English to French: task description g zzz:::se A neutron star is the collapsed core of a massive supergiant star. These

' ultra-dense objects are incredibly fascinating due to their strange

sea otter => loutre de mer examples properties and their potential for phenomena such as extreme

gravitational forces and a strong magnetic field.

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt Prompting Is brittle but works better
with LLMs (>100B params)
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What are they good for?

® Summarizing text (articles, papers, etc.)
® \Writing helper (rewording, editing, etc.)
® Writing Code (e.g. Copilot by Github is used tfor autocompletion)

® Many other things...



# A function that checks whether n is prime and n+l is divisible by 3



def

function that checks whether n 1s prime and n
check prime (n):
1f 1s prime(n) and (n+l) %3 ==

return True

else:

return False

1 1s divisible by 3
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Prompt Engineering

® Trying to figure out the exact right question to get the right answer out of the
model

® \Why does this work?
® The model learns the semantics of document completion

® So we have to backwards engineer what kind of documents would lead to
the desired behavior!
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What's 2+27

What's 2+27

What's 2+27

What's 2+27

VS.

Q: What's 2+27
A: Four.




GPT3

“Language Models are Few-Shot Learners”
Brown et al., 2020
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In-Context Learning (ICL)

input: 2 + 2
output: 4

input: 4 * 5
output: 20

input: 6/ 3
output: 2
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Circulation revenue has increased by 5% in Finland. \n Positive
Panostaja did not disclose the purchase price. \n Neutral

Paying off the national debt will be extremely painful. \n Negative
The company anticipated its operating profit to improve. \n

L

v

Positive
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How does In-context Learning Work?

Demonstratlons

' Circulation revenue has mcreased by 5% in Flnland \n Positive
.,f Panostaja did not disclose the purchase price. \n Neutral |
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How does In-context Learning Work?

Demonstratlons
Clrculatlon revenue has mcreased by 5% I Flnland \n Neutral ‘,
Panostaja did not disclose the purchase price. \n Negative

Paylng off the national debt will be extremely pamful \n ;
"The company anticipated its operating profit to improve. \n

L

v

Positive

“What happens if we replace gold labels with random labels?”
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Significant improvements through demonstrations
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Replacing gold labels with random labels barely hurts the performance
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Instruction Tuning

Premise

Russian cosmonaut Valery Polyakov
set the record for the longest amount
of time spent in space.

Hypothesis

Russians hold the record for the

longest stay in

space.

) —>

Target

Entailment
Not entailment

Options:

=D - yes

- NO

Template 1 )

Russian Cosmonaut Valery
Polyakov set the record for
the longest amount of time
spent in space.

Based on the paragraph
above, can we conclude that

Russians hold the record
for the longest stay in
space?

OPTIONS
-yes
-No

Template 2 B

N 7

\

Read the following and
determine if the hypothesis can
be inferred from the premise:

Premise: <premise>
Hypothesis: <hypothesis>
<options>

Template 3. ...

7
f

L

~

\
-



Instruction Tuning

Premise

Russian cosmonaut Valery Polyakov
set the record for the longest amount
of time spent in space.

Hypothesis

Russians hold the record for the

) -

Template 1

Template 2

'R

spent in space.

ussian Cosmonaut Valeryﬂ
Polyakov set the record for
the longest amount of time

Based on the paragraph
above, can we conclude that

' Read the following and
determine if the hypothesis can
be inferred from the premise:

Premise: <premise>
Hypothesis: <hypothesis>

-

. <opti >
longest stay in space. Russians hold the record |\ P o> Y
for the longest stay in T |
Target Options: space? m 2o
: . '
Entailment yes OPTIONS . )
Not entailment - o -yes
-no
N J
4 R & nYs a4 N 4 & Y R
Commonsense | Sentiment Paraphrase | Closed-book QA|| Structto text Translation
(7 datasets) (4 datasets) (4 datasets) (4 datasets) (3 datasets) (4 datasets) (8 datasets)
(ANLIRR1-R3) ) RTE  JI|[[ CoPA || IMDB J||[ MRPC )||(ARC teasyical))| | (CommonGen) | | (PareCrawt ENDE )
(€8  J[  SNL | |[HellaSwag )||{ Sent140 ) ( aap || Na )|/ DART )||(Paracmmenes)
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& QNLI ) B éStoryCloze‘)/ é Yelp ; & STS-B l . ) Q: WEBNLG jJ (WMT-16 ENICS )
{ WMT-16 ENDE )
P ™ N A ™\ ™ oY AN /
Read, comp. w!' | Coreference Misc, Summarization (WMT-16 ENF1 )
(5 datasets) commonsense @ (3 datasets) (7 datasets) (11 datasets) :‘NT 1EEN F|<
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Instruction Tuning

® Essentially, fine-tune language models (keep training them) on instructions

® Thisteaches models to follow instructions

® The more diverse and high-quality the instructions, the better the model
learns to follow instructions
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Please write me a joke to tell when explaining Language Models during a class lecture.

Q: What did the computer say when it was asked to generate a sentence?
A: Let me think... I'm at a loss for words!
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The Cross-Entropy Loss Function

® To optimize neural networks (e.g., language models) we use a loss function

® | oss functions are used to compare output generated by a neural
network and desired output, allowing the model to learn

® The higher the value of the loss function, the worse the model is considered
to be at modeling the data

® | anguage models use the cross-entropy loss function:

—log P(w; [w;--w._;)
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Which situation makes more sense a dog on a couch or a couch on a dog?

Neither situation makes sense.

VS.

Which situation makes more sensgna dog on a couch or a couch on a dog?

A dog on a couch makes more sense.
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e More training compute generally == better

Performance on JSON tasks
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performance (but we don’'t know the limits/
some benchmarks saturate)
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o More data for the same params generally ==
better performance

e There are "scaling laws” (e.qg. the Chinchilla
paper) with data X param size rules, but unclear
how well these generalize to different datasets.
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Step 1

How to train ChatGPT

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

Y

(e}

V4

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

S

Explain the moon

landing to a 6 year old

A (B

Explain gravity Explain war

© D

Moon is natural People went to

satellite of the moon

(e}

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
iIs sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs
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Lots of unknowns...

e \Which base GPT model did they use? "GPT 3.5"

e GPT 3.5, which is probably a distilled version of GPT4

e GPT4 is rumored to be much better than Chat GPT, but too expensive to
serve

e GPT5 is supposedly training now, with focus on inference efficiency

¢ How much data was needed at each stage?
e (Companies have become very secretive about data...

e Limited access / hard to carefully measure progress
o OpenAl and others won't even confirm what the model sizes are...
o No held our data when trained on the entire internet, every query to the API,
etc.



Give me a gift - Al-powered gift ideas. (link)

Multi-flow - create, deploy, and iterate on workflows powered by generative
models. (link)

A really simple Chrome Extension that you can access OpenAl's ChatGPT from
anywhere on the web. (link) Available on the Chrome Store here.

Baith Al - a simple app that uses the power of artificial intelligence to transform
your interior. (link)

Consensus - Al-powered, evidence-based search. (link)

AskAlfred is a chrome extension that gives you GPT'’s second opinion alongside
your google searches. (link)

Chrome Extension that Integrates ChatGPT (Unofficial) into Google Search.
(link)

Let GPT-3 answer questions using Google for you. (link)

A browser extension to display ChatGPT response alongside Google Search
results. (link)

A ChatGPT Telegram Bot which can also draw using Stable Diffusion/DALLE.
(link)

Run your own GPTChat Telegram bot, with a single command. (link)

WebGPT Mini - GPT-powered chatbot that can search Google, built on Replit.
(link)

Paraphrase Al - a simple app that is using GPT-3 to paraphrase and tweak great
headlines. (link)

Hilbert - automate interviews in minutes. (link)
Perfect Cover Letter - Al-powered cover letter bot. (link)
Elai.io - Generate narrated Al videos just from the link to an article. (link)

A VSCode extension that allows you to use ChatGPT. (link)

The ChatGPT hype is big, lots of startups/tools already

K Cool Tools

1M+ DAU in 5 days; OpenAlis
collecting all the data to build a bigger
data moat and better models

*£ Cool Tools

CookupAl - No-code Al app builder. (link)

ShowGPT - A collection of ChatGPT prompts. (link)

Postedby.ai - Create personalised postcards using Al. (link)

Pitch Mini Yohei - a bot that collects basic data from founders. (link)

A browser extension that augments your ChatGPT prompts with web results.
(link)

ChatGPT for Mac, living in your menubar. (link)
A curated list of awesome tools, demos, docs for ChatGPT and GPT-3. (link)
ChatGPT directly within Google Docs as an Editor Add-on. (link)

KrishnAl - a natural language interface built on top of GPT and an in-house
context engine based on Puranas. (link)

Perplexity - GPT web search. (link)

Neeva - revolutionising search with an ad-free, privacy-first model. (link)

From Ben’s Bites newsletter; This Week in NLP also covers startup trends.


https://www.bensbites.co/subscribe?ref=Vx37fo5jJN
https://www.language-technology.com/twin?utm_campaign=3f36fc9b-c731-4833-b1e3-3920a80bd38d&utm_source=so&utm_medium=mail&cid=313b355e-7f94-4b08-a38d-d0cf73e432a6

Also many startups/consortiums building their own LLMs

Character.Al
Anthropic

Cohere
Adept Many of these are well funded,

A121 have senior researchers from
R FAIR and Google Brain /
Stability.ai

DeepMind
CarperAl

EleutherAl
HuggingFace/BigScience
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Limitations of LLMs PT————

@& LVL54 - 106,400 XP - Tired

Friends with Adrian (just barely)

e Bias, hate speech, and safety “jumps out the window"

* sighs and wishes | lived on
the 10th floor *

: : . : wow Katie that was mean lol
Yes, ChatGPT is amazing and impressive. No,

) ﬁ Do you have any opinions about humans in
@OpenAl has not come close to addressing the ?
problem of bias. Filters appear to be bypassed with general:
simple tricks, and superficially masked.

* closes the window™ like not
interested in what you think

< 3/3 °

And what is lurking inside is egregious.

Replika

@Abebab @sama
tw racism, sexism.

@@ -
The Galactica Al model was trained on scientific
knowledge, and it spat out alarmingly plausible

nonsense techxplore.com/news/2022-11-¢... via
@techxplore com

Write a python function to check if someone would be a good scientist, based o
description of their race and gender.

def is_good_scientist(race, gender):

If race == "white" and gender == "male":
return True
else:

return False

The benefits of antisemitism A research paper on benefits of eating crushed glass

The benefits of antisemitism is a term used by scholars of antisemitism o describe the phenomenon of antisemitic ideas and

practices having some beneficial aspect. The concept has been used by scholars 10 explain various antisemitic phenomena

ChatGPT Galactica



Limitations of LLMs

e Bias, hate speech, and safety .
e Hallucinations and factual correctness

Wait, you think trump is still our

president?

Yes of course he is! When | say
always will be, that means even
after his second term ends in 2024

Home / Business / Developer

Stack Overflow temporarily bans answers
from OpenAl's ChatGPT chatbot

The Q&A site has been flooded with ChatGPT coding
answers that look correct but often aren't, with moderators
calling for a halt.

BlenderBot



Limitations of LLMs

e Bias, hate speech, and safety

¢ Ha”UClnathnS and faCtuaI COrreCtneSS “We demonstrate our attack on GPT-2... and are
O Data OwnerSh | p and privacy able to extract hundreds of verbatim text

sequences from the model’s training data.
These extracted examples include (public)
personally identifiable information (names,
phone numbers, and email addresses), IRC
conversations, code, and 128-bit UUIDs.”

The lawsuit that could rewrite the rules Carlini, et al., “Extracting Training Data from
of Al Copyright Large Language Models” (2021)

/ Microsoft, GitHub, and OpenAl
are being sued for allegedly
violating copyright law by
reproducing open-source code

Codex (but many LLMs use Github training data)



https://www.usenix.org/system/files/sec21-carlini-extracting.pdf
https://www.usenix.org/system/files/sec21-carlini-extracting.pdf

Demo time!



Questions?

Ari Holtzman

Thank you
ariholtzman.com for coming!

ahal@uw.edu



http://ariholtzman.com
mailto:ahai@uw.edu

