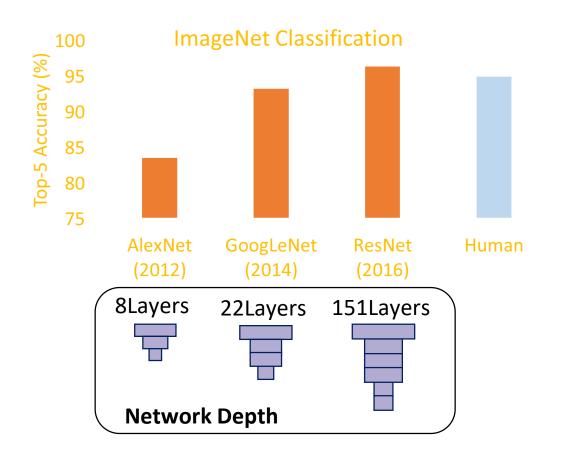
Neural Network

UW CSE 473 Feb/24/2023 Kechun Liu

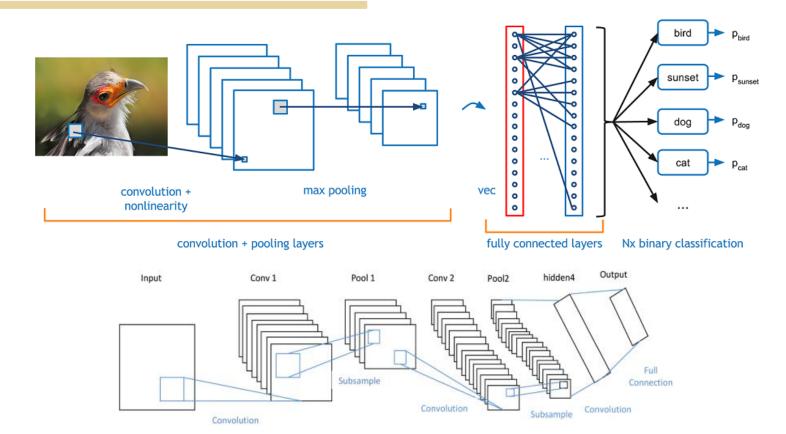
Summary

- CNN
 - Image Classification
 - Semantic Segmentation
 - Detection
- RNN
- Transformer
- RL
- PyTorch

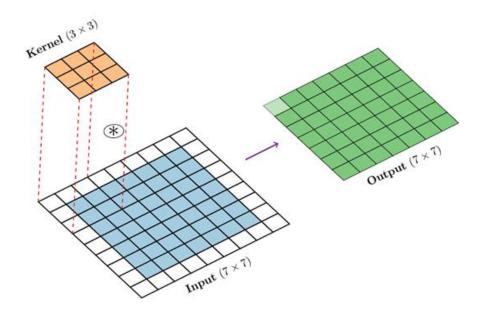
Introduction



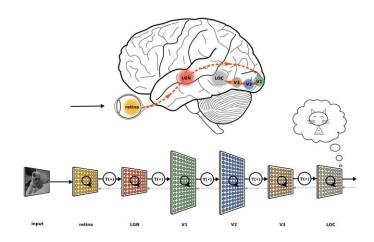
CNN



Convolution Operation



Nowadays, we learn kernels from the data.



Learning

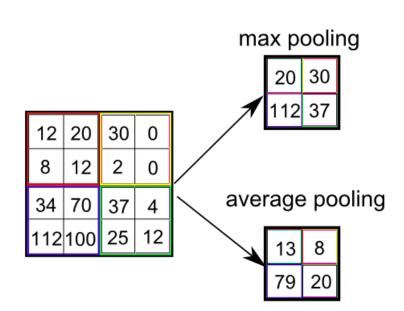
O₁₁ O₁₂ O₂₂ = Convolution
$$\begin{pmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{pmatrix}$$
, F₁₁ F₁₂ F₂₁ F₂₂ $\begin{pmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{pmatrix}$, O₁₁ = F₁₁X₁₁ + F₁₂X₁₂ + F₂₁X₂₁ + F₂₂X₂₂ O₁₂ = F₁₁X₁₂ + F₁₂X₁₃ + F₂₁X₂₂ + F₂₂X₂₃ O₂₁ = F₁₁X₂₁ + F₁₂X₂₂ + F₂₁X₃₁ + F₂₂X₃₂ O₂₂ = F₁₁X₂₂ + F₁₂X₂₃ + F₂₁X₃₂ + F₂₂X₃₃

- Details:
- https://www.slideshare.net/EdwinEfranJimnezLepe/example-feedforward-backpropagation
- https://medium.com/@2017csm1006/forward-and-backpropagation-in-convolutional-neural-network-4dfa96d7b37e

Pooling

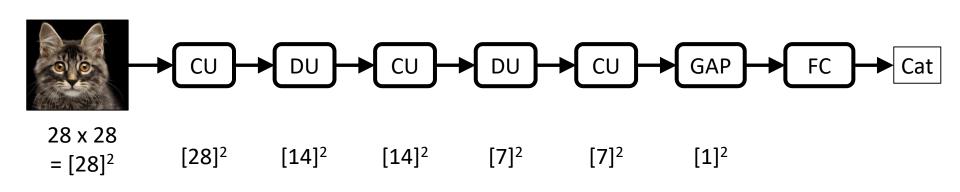
e.g. kernel size = 2, stride = 2 for both width and height.

The kernel size for pooling can be an even number.

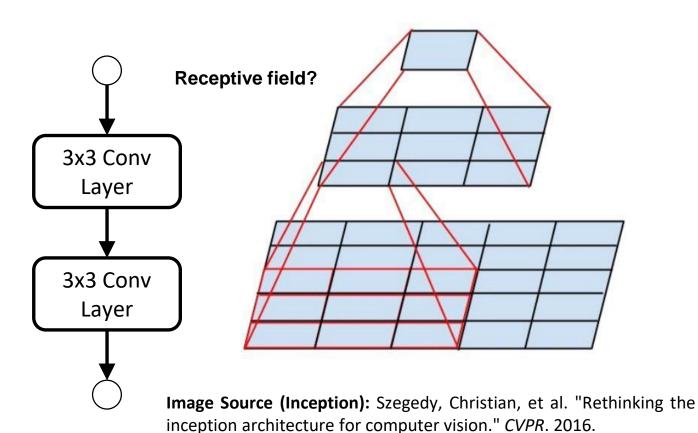


CNN Structures Image Classification

Image Classification

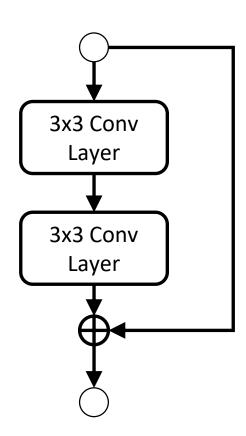


Convolutional Unit (CU) - VGG



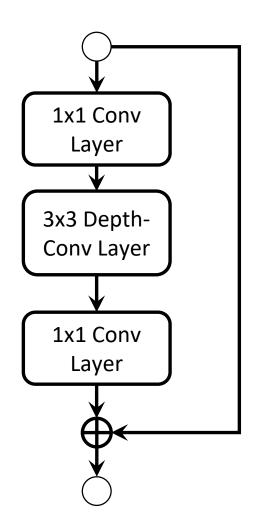
3x3 conv, 64 Size:224 3x3 conv, 64 pool/2 Size:112 3x3 conv, 128 3x3 conv, 128 pool/2 3x3 conv, 256 Size:56 3x3 conv, 256 3x3 conv, 256 pool/2 Size:28 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 pool/2 3x3 conv, 512 Size:14 3x3 conv. 512 3x3 conv, 512 pool/2 Size:7 fc 4096 fc 4096 fc 4096

Basic Block in ResNet



ResNet: He, Kaiming, et al. "Deep residual learning for image recognition." CVPR. 2016.

- Residual Connection
- Element-wise addition of input and output
- Improves gradient flow and accuracy
- In ResNet-18 and ResNet-34
- Still computationally expensive
 - Hard to train very deep networks (> 100 layers)



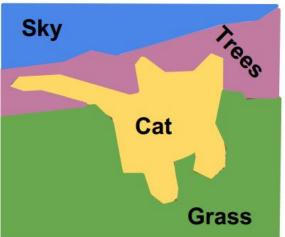
Bottleneck in ResNet

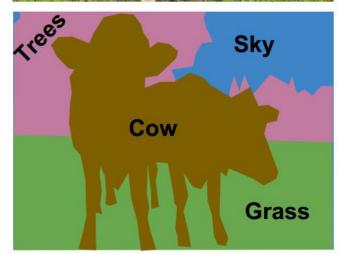
- Used in ResNet-50, ResNet-101, ResNet-152, etc...
- Computationally Efficient

Influence:

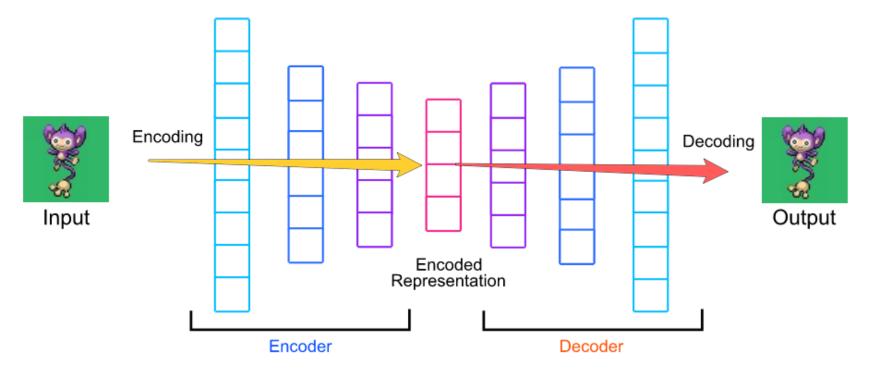
- Bottleneck unit with Depth-wise convs
 - MobileNetv2
 - ShuffleNetv2
- MobileNetv2: Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks." CVPR, 2018.
- **ShuffleNetv2:** Ma, Ningning, et al. "Shufflenet v2: Practical guidelines for efficient cnn architecture design." ECCV, 2018.

CNN Structures Semantic Segmentation

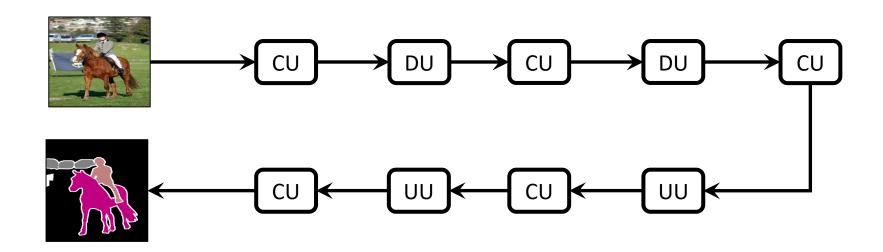


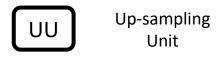


Encoder-Decoder



Encoder-Decoder in Semantic Segmentation





CU Convolutional Unit

FC

Fully-connected Or Linear Layer

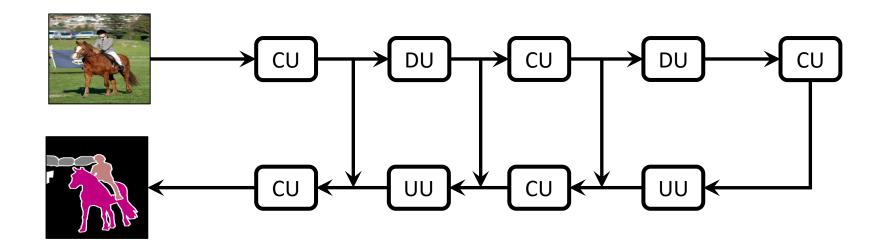
DU

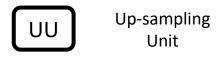
Down-sampling Unit

GAP]

Global Avg. Pooling

U-Net





CU Convolutional Unit

FC

Fully-connected Or Linear Layer

DU

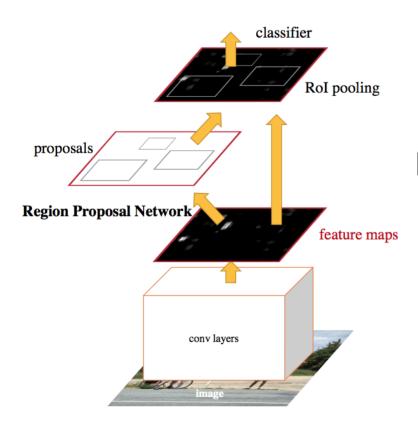
Down-sampling Unit

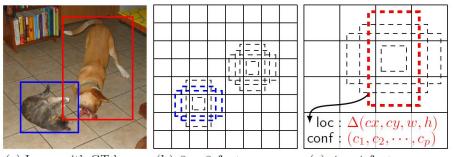
GAP

Global Avg. Pooling

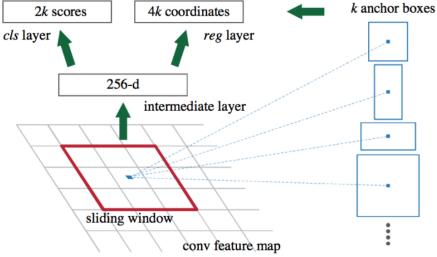
CNN Structures Detection

Faster RCNN





(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map



RNN Structures

Challenges for time-series signals

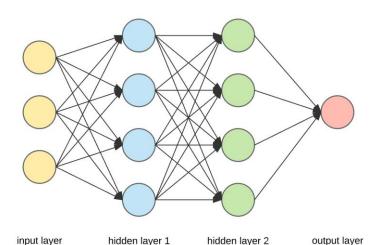
Different signal length

input layer

Online inference for new timepoint

(Vanilla) Neural Network

1940s - 1980s



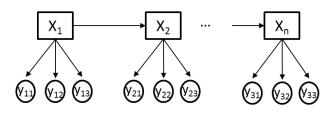
output layer

Hidden Markov Model

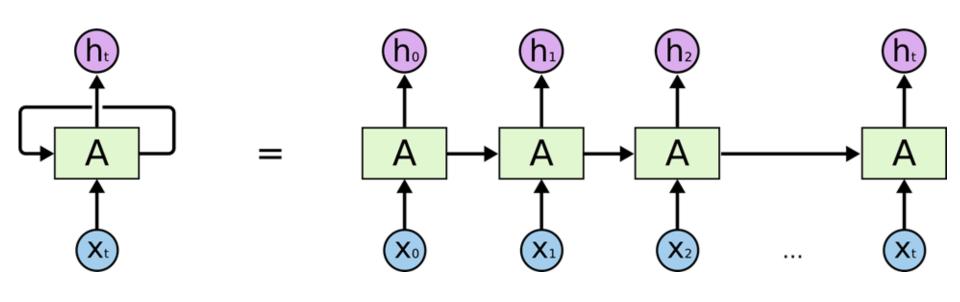
Andrew Viterbi, 1967 Lawrence Rabiner, 1989

X_t: hidden state variables

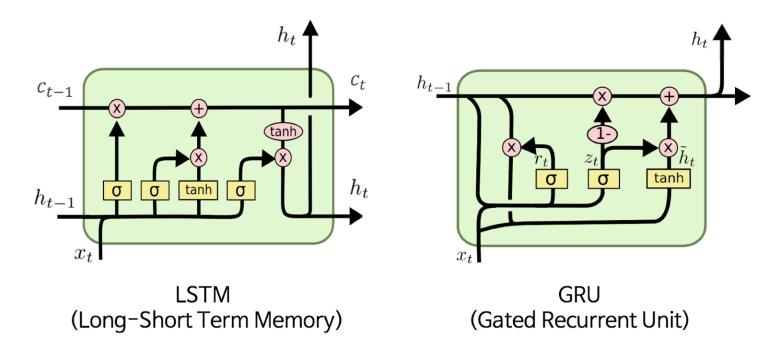
y_{ti}: ith observed variable @ t



Recurrent Neural Network

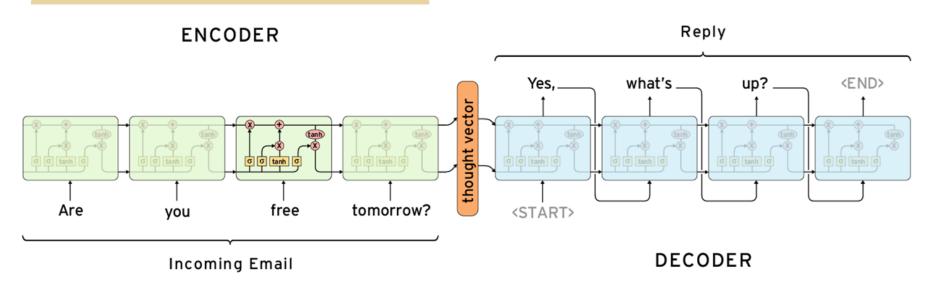


LSTM and GRU: Memory for RNNs



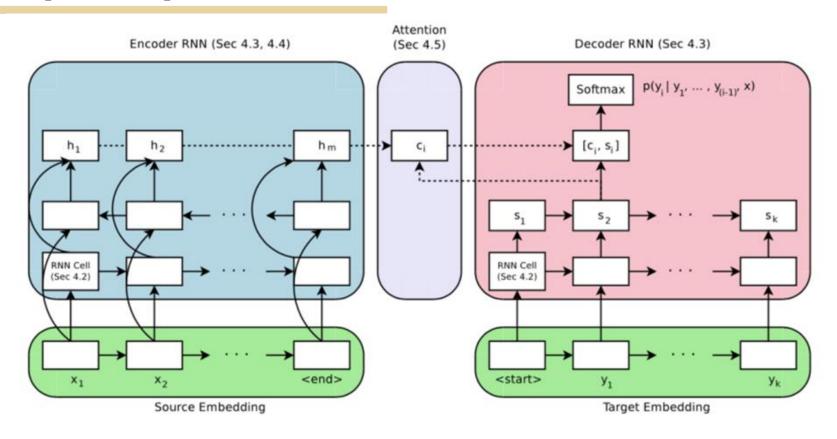
http://dprogrammer.org/rnn-lstm-gru https://towardsdatascience.com/grus-and-lstm-s-741709a9b9b1

Seq-2-Seq



- Encoder maps a variable-length source sequence (input) to a fixed-length vector
- Decoder maps the vector representation back to a variable-length target sequence (output)
- Two RNNs are trained jointly to maximize the conditional probability of the target sequence given a source sequence

Seq-2-Seq with Attention



Transformer

Limitations of CNN and RNN

1. "Locality" of the convolution operation

- a. Reduce dimension (compared to fully-connected layers) while maintaining useful local information
- b. It could NOT see two pixels that are far away

2. "Recurrence" of recurrent neural network

- a. It can take an input with arbitrary size (length)
- b. "Vanishing of gradient" problem when sequence length is too long (during backpropagation)

Well, forget about convolution and recurrent

IS ALL YOU NEED

Attention Is All You Need

avasv

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* †
University of Toronto
aidan@cs.toronto.edu

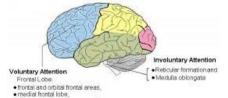
Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

What is attention?

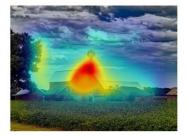


- - · dorsalateral frontal area, and

Psychology

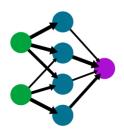


Eye-tracking

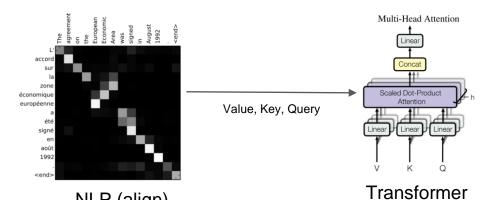


Computer Vision (Saliency Map)

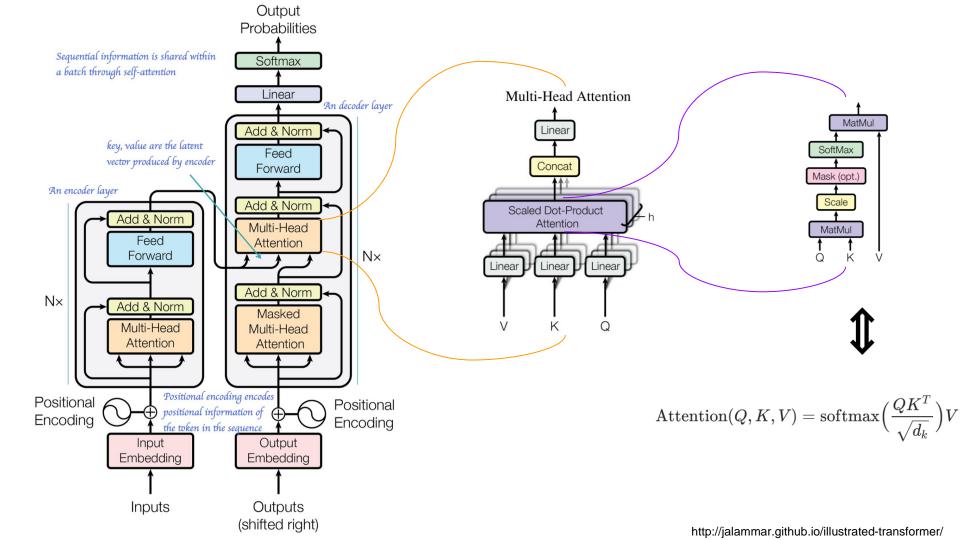
Computer Vision (Backpropagation)



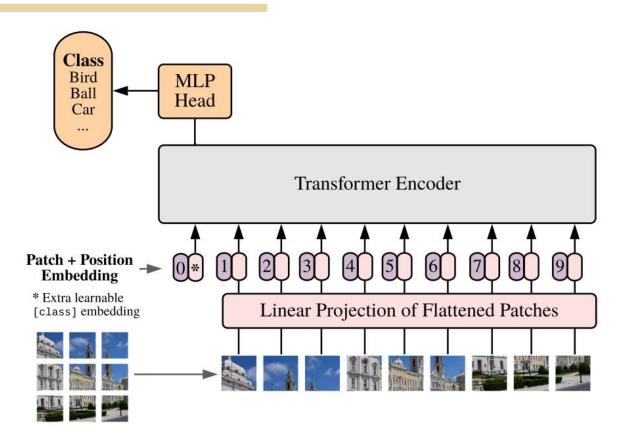
Neural Network (weights)



NLP (align) Bahdanau, Cho, Bengio, 2015, ICLR



Vision Transformer



Limitations of Transformer

- 1. It cannot learn hierarchical features efficiently (while CNN can)
- 2. It cannot model periodic finite-state language (while RNN can)
- 3. It requires lots for computer memory
- 4. It requires more training data than CNN/RNN (not a big problem)

NN for RL

Which Direction

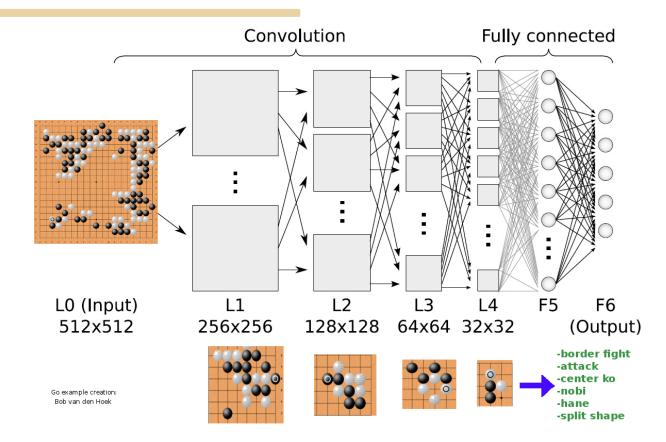
Regression:

Angle = $[-540^{\circ}, 540^{\circ}]$

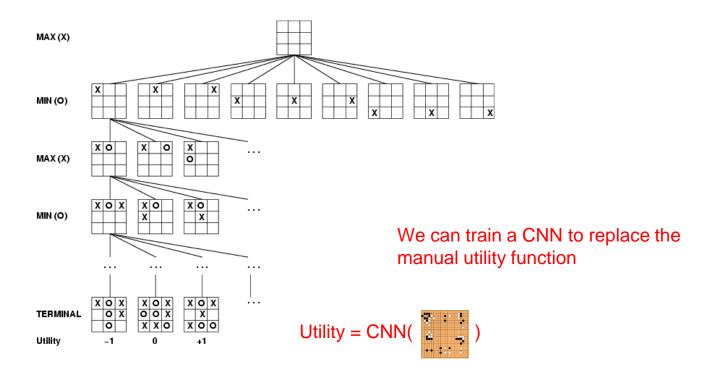
Classification:

- Turn left
- Turn right
- Stay Still

Which Move

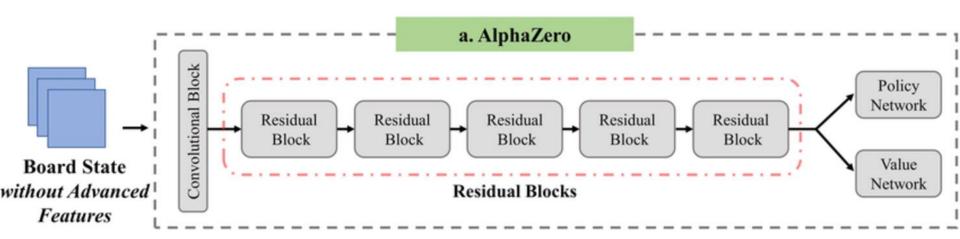


Design Utility Function



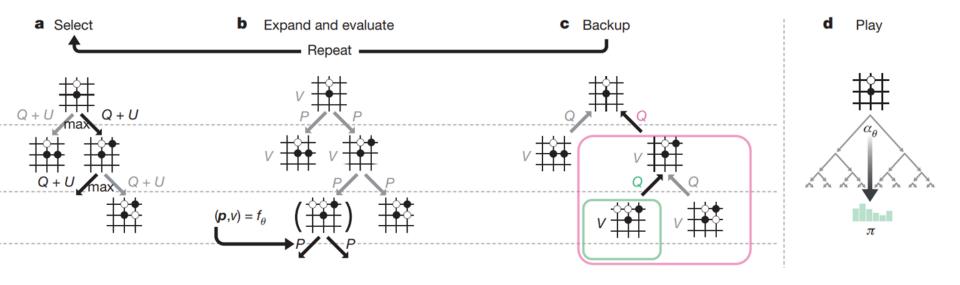
AlphaZero

ResNet backbone Policy Network Value Network



Monte Carlo Tree Search

Active Learning to balance Exploration v.s. Exploitation



Intro to PyTorch

Deep Learning Libraries

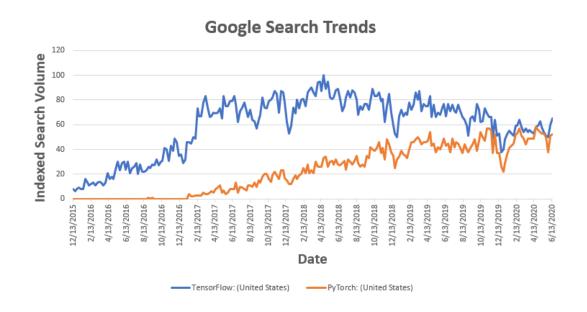
Minimum Libraries

Minimum Libraries

Minimum Libraries

Deep Learning Frameworks

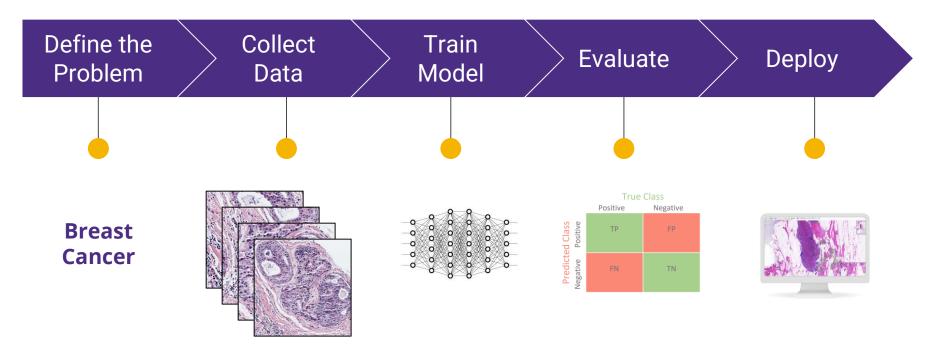
- Before 2012: custom C++, MatLab, R, Lua, ... code.
 - Only limited libraries/functions
 - You need to do most things yourself
- MXNet (2015)
- TensorFlow (2015)
- Caffe (2015)
- Torch (2002): Lua
- PyTorch (2016)



Why PyTorch

- Autograd
- Dynamic computational graph
- Debugging is easier!
- Data Parallelism (multiple GPU)
- Pythonic-syntax (Python)
- Multiple language support: Python, C++, Java
- Many more!

Machine Learning Process



Model Definition

```
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
    def __init__(self):
        super(Net, self). init ()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
```

Training a model

```
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
    # get the inputs
    inputs, labels = data
    # zero the parameter gradients
    optimizer.zero_grad()
    # forward + backward + optimize
    outputs = net(inputs)
    loss = criterion(outputs, labels)
    loss.backward()
    optimizer.step()
    # print statistics
    running loss += loss.item()
    if i % 2000 == 1999: # print every 2000 mini-batches
        print('[%d, %5d] loss: %.3f' %
              (epoch + 1, i + 1, running_loss / 2000))
        running_loss = 0.0
```