Homework: CNN

1

Neural Network (Q1)

input layer

hidden layer 1

hidden layer 2

output layer

Convolutional Neural Network (Q2)

Yellow or Blue?

Color Normalization (Q3)

Deep Convolutional Neural Network (Q4)

Make the Design More Flexible

Input:

[8, 16, 32, "pool"]

Layer	Output Size	Output Channels
Input	30 x 30	3
Conv	28 x 28	8
ReLU	28 x 28	8
Conv	26 x 26	16
ReLU	26 x 26	16
Conv	24 x 24	32
ReLU	24 x 24	32
Max Pool	12 x 12	32
Linear		5

Data Augmentation (Q5)

Random Affine Transformation

Low-Resource Neural Adaptation

Beibin Li <u>beibin@uw.edu</u> Feb/2021

Traditional Machine Learning

Challenges and Opportunities

During Training

Melanoma

During Deployment

Adults' Expression

Children's Expression 11

Adaptation in Humans: Fast and Good

During Learning

Snowboard

Drive U-Haul Truck

During Using

Drive car

How about Machines?

Can we do better and improve machine's adaptation?

Learning Inference Adaptation Utilize Prior Knowledge Votel Samples

Practice Different Tasks

Learn from Failure

Estimate Confidence

Adjust Behavior

Adapting Knowledge

Small Datasets Big Data AGEN 14+ Million Images Medical Imaging **Foundation Models** (Large, Powerful) (*Centralized*, *Federated*) WikiText-103: 100+ Million Tokens **Private Documents**

Adapting Shifts

Prior Studies

Stats Analysis

Domain Adaptation

Meta Learning

Self-Supervision

Exploration v.s. Exploitation 17

They are Powerful, But...

Unified Framework in Human Brain!

Prefrontal Cortex

Executive Functioning Skills Shifting Inhibitory Short-Term Memory Confidence in Problem-Solving Language Generation

Social Influences on Executive Functioning in Autism: Design of a Mobile Gaming Platform. Li, B., et al. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (p. 443) (ACM SIGCHI 2018).

Memory Deficit in Patients with Temporal Lobe Epilepsy: Evidence from Eye Tracking Technology Zhu, G., et al. Frontiers in Neuroscience 2021

Translate DL for Real World

Bringing state-of-the-art adaptation techniques into real-world applications for private entities (e.g., due to HIPAA, privacy, labeling cost, etc.).

We need a **Unified** framework for these various ML tasks

Build in-house private foundation models for low-resource data

Method

An unified pipeline to adapt shifting in low-resource learning

Decoders and Tasks

Classify, Regress

Reconst, Recover

Generate

Segment, Detect

f(Confidence Esti.)

Medical Imaging

Ducts: for Breast Cancer Diagnosis

- Important Region for Diagnosis
- Interpretable Intermediate Results
- Only **240** Images (Biopsies) in the Dataset
- No Duct Label

Classifying Breast Histopathology Images with a Ductal Instance-Oriented Pipeline **Li, B.**; Mercan, E.; Mehta, S.; Knezevich, S.; Arnold, C.; Weaver, D.; Elmore, J.; Shapiro, L. In 2020 25th International Conference on Pattern Recognition. IEEE.

Ductal Instance Identification

(a) ROI image

(b) Binary

(c) Previous

(d) Ours

Weakly Supervised Annotation

- Human-Al Collaboration
- Weakly Supervised Labeling
- Combines
 - Machine's Semantic Prediction 0
 - Human Box Annotation \bigcirc
- Instance Segmentation Labels
- Silver Standard

- · Arrows Up and DOWN cycle classes
- Key DELETE remove selected Bbox

Diagnostic Performance

Instance Segmentation Results

Good

Imperfect

Diagnostic Results

Task	Features	Sensitivity	Specificity	Accuracy	\mathbf{F}_1
	Pathologists	0.84	0.99	0.98	0.86
T ' NT ' '	Superpixel Features	0.70	0.95	0.94	0.62
Invasive vs Non-invasive	Structure Features	0.49	0.96	0.91	0.51
	Ours	0.62	0.98	0.95	0.73
Atypia and DCIS vs Benign	Pathologists	0.72	0.62	0.81	0.51
	Superpixel Features	0.79	0.41	0.70	0.46
	Structure Features	0.85	0.45	0.70	0.50
	Ours	0.85	0.63	0.79	0.59
	Pathologists	0.70	0.82	0.80	0.76
	Superpixel Features	0.88	0.78	0.83	0.86
DCIS vs Atypia	Structure Features	0.89	0.80	0.85	0.87
	Ours	0.91	0.89	0.90	0.92

Method	Accuracy
Pathologists	0.70
MIL with max-pooling	0.55
MIL with learned fusion	0.67
Semantic Learning	0.55
Y-Net	0.63
Ours	0.70 ± 0.02

Ablation Experiments

			Malignant Epithelium (BE) and Necrosis (NC) co-o
	Benign Epithelium	(BE) near Boundary (BD)		
Method	Accuracy	Rank 1 BD &	DIOP (ours)	Tissue-level model ME & NC in ROI
Tissue in ROI Tissue in Duct box Tissue in Duct mask Tissue in Duct mask + ROI Tissue in Duct box + ROI Tissue in Duct box + mask Tissue (All)	0.67 0.66 0.69 0.69 0.67 0.69 0.70	2 ME & 3 BD & 4 BE & 1 5 BG & 6 BH 7 ME & 8 NC free	<u>x NC in duct mask</u> NS in bounding box NC in duct mask NC in duct mask & SC in ROI SC in bounding box eq in bounding box	BG & NC in ROI SC freq in ROI BE freq in ROI BE & SC in ROI ME & NS in ROI BE & NS in ROI NC freq in ROI

Necrosis (NC) near Boundary (BD)

Behavior Analysis

Data Collection

- From iPad Air 2 or iPad 5th Generation
- 88 participants
 - 49 children with ASD
 - 39 typically developing (TD) peers

Disclaimer: During our experiments, informed consent was obtained from parents of all children, and all study procedures were designed in accordance with the World Medical Association Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects as well as in compliance with HIPAA to preserve privacy. The Institutional Review Boards approved these studies of Yale University, Seattle Children's Research Institute, and the University of Washington.

Multi-Task Learning in Affective Computing

A Facial Affect Analysis System for Autism Spectrum Disorder Li, B.; Mehta, S.; Aneja, D.; Foster, C.; Ventola, P.; Shic, F.; Shapiro, L. In Proceedings of the IEEE International Conference on Image Processing (ICIP 2019)

Results

CNN Unit	# Params	FLOPs	Expression (F1)	AU (mF1Acc)	Valence (CC)	Arousal (CC)
		Sing	gle-task			
Bottleneck	25.9 M	3.4 B	0.56	0.78	0.63	0.54
MobileNet	24.8 M	3.1 B	0.57	0.77	0.64	0.52
EESP	9.7 M	$1.2 \mathrm{~B}$	0.57	0.76	0.64	0.52
Multi-task						
Bottleneck	6.5 M	$0.85 \mathrm{~B}$	0.58	0.75	0.68	0.61
MobileNet	6.2 M	$0.78 \mathrm{~B}$	0.58	0.75	0.68	$\left(0.62 \right)$
EESP	2.4 M	$0.29~\mathrm{B}$	0.58	0.75	0.69	0.61
Literature						
SOTA	-	-	0.58	-	0.66	0.54
Human Performance	-	-	0.61	*	0.82	0.57

- Benitez-Quiroz, Carlos Fabian, Yan Wang, and Aleix M. Martinez. "Recognition of Action Units in the Wild with Deep Nets and a New Global-Local Loss." *ICCV*. 2017.
- Benitez-Quiroz, C. Fabian, et al. "EmotioNet Challenge: Recognition of facial expressions of emotion in the wild." *arXiv preprint arXiv:1703.01210* (2017).
- Mollahosseini, Ali, Behzad Hasani, and Mohammad H. Mahoor. "AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild." *IEEE Transactions on Affective Computing* (2017).

Gaze Estimation (Face to Gaze)

Severity of Data Shift (Post-Hoc)

Population	Data	Euclidean	L/R	U/D
ropulation	Source	Error	Accuracy	Accuracy
Adults Gaz	eCapture	3.53	0.86	0.82
TD Children	Lab	4.65	0.82	0.74
Children with ASD	Lab	4.86	0.81	0.68
Children with ASD	Home	4.96	0.74	0.65

Adaptation (Calibration) Performance

Calibrate	Euclidean	L/R	U/D
On	Error	Accuracy	Accuracy
None	4.80	0.81	0.71
5-point	4.59	0.81	0.74
Smooth Pursuit	4.47	0.82	0.69
Both	4.32	0.82	0.72

Scanpath Analysis

Learning Oculomotor Behaviors from Scanpath Data. Li, B.; Nuechterlein, N.; Barney, E.; Foster, C.; Kim, M.; Mahony, M.; Atyabi, A.; Feng, L.; Wang, Q.; Ventola, P.; Shapiro, L.; Shic, F. In 2021 ACM International Conference In Multi-modal Interaction (ICMI).

Application Group Classification

Method	Accuracy	AUC	F-1
Expert Features from	0.74	0.68	0.82
SGIN (with more data)	0.78	0.83	0.83
Ours	0.80	0.83	0.88

Results for Autism Classification

Query Optimization in DBMS

Cardinality Estimation

```
SELECT p.Name AS ProductName,
NonDiscountSales = (OrderQty * UnitPrice),
Discounts = ((OrderQty * UnitPrice) *
UnitPriceDiscount)
FROM Production.Product AS p
JOIN Sales.SalesOrderDetail AS sod
ON p.ProductID = sod.ProductID
ORDER BY ProductName DESC;
```


- Q-error Bounds of Random Uniform Sampling for Cardinality Estimation. Li, B.; Lu, Y.; Wang, C.; Kandula, S..
- Warper: Efficiently Adapting Learned Cardinality Estimators to Data and Workload Drifts. Li, B.; Lu, Y.; Wang, C.; Kandula, S..

Data Shift After Deployment

Discussion

Future Work

- Apply and Test on More Modalities (NLP, DNA, ...)
- More Theoretical Analyses
- Multi-Encoder
- Improve User Interface for AutoML
- Federated Learning, Decentralized Learning
- Diversity, Equality, Fairness, and Bias

