Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful." — George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Bayes’Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be vague about how these interactions are specified

Example Bayes’ Net: Insurance

Example Bayes’ Net: Car
Graphical Model Notation

- **Nodes**: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- **Arrows**: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)

Example: Coin Flips

- N independent coin flips

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: Independence
- Model 2: rain causes traffic

Example: Traffic II

- Let's build a causal graphical model:
 - Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

Bayes' Net Semantics
Bayes’ Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 - CPT: conditional probability table
- Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes’ nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(x_i)) \]
- Example:

Example: Coin Flips

- Why are we guaranteed that setting results in a proper joint distribution?
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(x_i)) \]
- Chain rule (valid for all distributions):
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(x_i)) \]
- Assume conditional independences:
 \[P(x_i | x_1, \ldots, x_{i-1}) = P(x_i | \text{parents}(x_i)) \]
 - Consequence:
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(x_i)) \]
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Traffic

- Chain rule (valid for all distributions):
 \[P(T | R) = \prod_{i=1}^{n} P(T_i | R_i) \]

Example: Alarm Network

- Bayes’ nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i | \text{parents}(x_i)) \]
- Example:
Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g., consider the variables Traffic and Drips
 - End up with arrows that reflect correlation, not causation

- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence
 \[P(x_i | x_1, \ldots, x_{i-1}) = P(x_i | \text{parents}(x_i)) \]