Reinforcement Learning II

Steve Tanimoto

Reinforcement Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$
- Still looking for a policy $\pi(s)$
- New twist: don’t know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^, Q^, \pi$</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^, Q^, \pi$</td>
<td>Value / policy iteration on approx. MDP</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Policy evaluation on approx. MDP</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute $V^, Q^, \pi$</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy π</td>
<td>Value Learning</td>
</tr>
</tbody>
</table>

Model-Free Learning

- Model-free (temporal difference) learning
- Experience world through episodes $(s, a, r, s', a', r', s''', a''', r''', s''''', \ldots)$
- Update estimates each transition (s, a, r, s')
- Over time, updates will mimic Bellman updates

Q-Learning

- We’d like to do Q-value updates to each Q-state:
 $Q_{t+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_t(s', a') \right]$
- But can’t compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s, a, r, s')
 - This sample suggests $Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$
- But we want to average over results from (s, a) (Why?)
- So keep a running average
 $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') \right]$

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy — even if you’re acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - … but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
How to Explore?

- **Several schemes for forcing exploration**
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability $1 - \varepsilon$, act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- **When to explore?**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- **Exploration function**
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$
 - Regular Q-Update: $Q(s, a) \leftarrow R(s, a, s') + \gamma \max_{a'} Q(s', a')$
 - Modified Q-Update: $Q(s, a) \leftarrow R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$
 - Note: this propagates the “bonus” back to states that lead to unknown states as well!
Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards.
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal.
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret.

Approximate Q-Learning

- Basic Q-Learning keeps a table of all q-values.
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training.
 - Too many states to hold the q-tables in memory.
- Instead, we want to generalize:
 - Learn about some small number of training states from experience.
 - Generalize that experience to new, similar situations.
 - This is a fundamental idea in machine learning, and we’ll see it over and over again.

Example: Pacman

Let’s say we discover through experience that this state is bad:

In naive q-learning, we know nothing about this state:

Or even this one:

Video of Demo Q-Learning Pacman – Tiny – Watch All
Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state.
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)
 - Is Pacman in a tunnel? (0/1)
 - ... etc.
 - Can also describe a q-state (s, a) with features (e.g., action moves closer to food)

Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 - Advantage: our experience is summed up in a few powerful numbers
 - Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

- Q-learning with linear Q-functions:
 - Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
 - Formal justification: online least squares

Example: Q-Pacman

- Exact Q's
- Approximate Q's

Q(s, a) = w1f1(s, a) + w2f2(s, a) + ... + wnfn(s, a)

Q(s, a) = 4.0fDOT(s, a) - 1.0fGST(s, a)

Q(s, a) = 3.0fDOT(s, a) - 3.0fGST(s, a)

Video of Demo Q-Learning Pacman – Tiny – Silent Train

Video of Demo Q-Learning Pacman – Tricky – Watch All
Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression*

Prediction: \(\hat{y} = w_0 + w_1 f_1(x) \)

Prediction: \(\hat{y} = w_0 + w_1 f_1(x) + w_2 f_2(x) \)

Optimization: Least Squares*

\[
\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_i w_i f_i(x_i) \right)^2
\]

Minimizing Error*

Imagine we had only one point \(x \), with features \(f(x) \), target value \(y \), and weights \(w \):

\[
\text{error}(w) = \frac{1}{2} \left(y - \sum_i w_i f_i(x) \right)^2
\]

\[
\frac{\partial \text{error}(w)}{\partial w_i} = -\left(y - \sum_i w_i f_i(x) \right) f_i(x)
\]

\[
w_{i+1} = w_i + \alpha \left(y - \sum_i w_i f_i(x) \right) f_i(x)
\]

Approximate q update explained:

\[
w_{\text{new}} = w_{\text{old}} + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] f_0(s, a)
\]

target "prediction"

Overfitting: Why Limiting Capacity Can Help*

Degenerate polynomial
Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We’ll see this distinction between modeling and prediction again later in the course

- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Better methods exploit lookahead structure, sample wisely, change multiple parameters…

Conclusion

- We’re done with Part I: Search and Planning!
- We’ve seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!