Recap: Search Problem
- States
 - configurations of the world
- Successor function:
 - function from states to lists of (state, action, cost) triples
- Start state
- Goal test

N-Queens as Search?
- Given N x N chess board
- Can you place N queens so they don’t fight?

Search Methods
- Depth first search (DFS)
- Breadth first search (BFS)
- Iterative deepening depth-first search (IDS)
- Best first search
- Uniform cost search (UCS)
- Greedy search
- A*
- Iterative Deepening A* (IDA*)
- Beam search, hill climbing
- Stochastic Search
- Constraint Satisfaction

IDA* for N-Queens?
- Given N x N chess board
- Can you place N queens so they don’t fight?
Best-First Search
- Generalization of breadth-first search
- Fringe = Priority queue of nodes to be explored
- Cost function \(f(n) \) applied to each node

```
Add initial state to priority queue
While queue not empty
    Node = head(queue)
    If goal?(node) then return node
    Add children of node to queue
```

Iterative-Deepening A*
- Like iterative-deepening depth-first, but...
- Depth bound modified to be an \(f \)-limit

```
Start with \( f \)-limit = \( h \)(start)
Prune any node if \( f \)(node) > \( f \)-limit
Next \( f \)-limit = min-cost of any node pruned
```

IDA* Analysis
- Complete & Optimal (a la A*)
- Space usage \(\propto \) depth of solution
- Each iteration is DFS - no priority queue!
- # nodes expanded relative to A*
 - Depends on # unique values of heuristic function
 - In 8 puzzle: few values \(\Rightarrow \) close to # A* expands
 - In eastern-europe travel: each \(f \) value is unique
 \(\Rightarrow 1+2+\ldots+n = O(n^2) \) where \(n \)=nodes A* expands
 - if \(n \) is too big for main memory, \(n^2 \) is too long to wait!
- Generates duplicate nodes in cyclic graphs

Beam Search
- Idea
 - Best first
 - But discard all but \(N \) best items on priority queue
- Evaluation
 - Complete?
 - No
 - Time Complexity?
 - \(O(b^d) \)
 - Space Complexity?
 - \(O(b+N) \)

Hill Climbing
- Idea
 - "Gradient ascent"
 - Always choose best child; no backtracking
 - Beam search with |queue| = 1
- Problems?
 - Local maxima
 - Plateaus
 - Diagonal ridges

Heuristics
- It’s what makes search actually work
Admissible Heuristics

- \(f(x) = g(x) + h(x) \)
- \(g \): cost so far
- \(h \): underestimate of remaining costs

Where do heuristics come from?

Relaxed Problems

- Derive admissible heuristic from exact cost of a solution to a relaxed version of problem
 - For blocks world, distance = \(\# \) move operations
 - heuristic = number of misplaced blocks
 - **What is relaxed problem?**

- Cost of optimal soln to relaxed problem \(\leq \) cost of optimal soln for real problem

What’s being relaxed?

Heuristic = Euclidean distance

Traveling Salesman Problem

Objective: shortest path visiting every city

What can be Relaxed?

Heuristics for eight puzzle

- What can we relax?

 \(h_1 = \text{number of tiles in wrong place} \)

 \(h_2 = \sum \text{distances of tiles from correct loc} \)

Importance of Heuristics

<table>
<thead>
<tr>
<th>D</th>
<th>IDS</th>
<th>A*(h1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
</tr>
<tr>
<td>18</td>
<td>3056</td>
<td>113</td>
</tr>
<tr>
<td>24</td>
<td>39135</td>
<td></td>
</tr>
</tbody>
</table>
Importance of Heuristics

- $h_1 = \text{number of tiles in wrong place}$
- $h_2 = \sum \text{distances of tiles from correct loc}$

<table>
<thead>
<tr>
<th>D</th>
<th>IDS</th>
<th>$A^*(h_1)$</th>
<th>$A^*(h_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>112</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>680</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>6384</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>47127</td>
<td>93</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>364404</td>
<td>227</td>
<td>73</td>
</tr>
<tr>
<td>14</td>
<td>3473941</td>
<td>539</td>
<td>113</td>
</tr>
<tr>
<td>18</td>
<td>3056</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>39135</td>
<td>1641</td>
<td></td>
</tr>
</tbody>
</table>

Decrease effective branching factor

Need More Power!

Performance of Manhattan Distance Heuristic

- 8 Puzzle: < 1 second
- 15 Puzzle: 1 minute
- 24 Puzzle: 65000 years

Need even better heuristics!

Subgoal Interactions

- Manhattan distance assumes each tile can be moved independently of others
- Underestimates because doesn’t consider interactions between tiles

Pattern Databases

- Pick any subset of tiles
 - E.g., 3, 7, 11, 12, 13, 14, 15
 - (or as drawn)
- Precompute a table
 - Optimal cost of solving just these tiles
 - For all possible configurations
 - 57 Million in this case
 - Use A^* or IDA*
 - State = position of just these tiles (& blank)

Using a Pattern Database

- As each state is generated
 - Use position of chosen tiles as index into DB
 - Use lookup value as heuristic, $h(n)$
 - Admissible?

Combining Multiple Databases

- Can choose another set of tiles
 - Precompute multiple tables
 - How combine table values?

- E.g. Optimal solutions to Rubik’s cube
 - First found w/ IDA* using pattern DB heuristics
 - Multiple DBs were used (dif cubie subsets)
 - Most problems solved optimally in 1 day
 - Compare with 574,000 years for IDDFS
Drawbacks of Standard Pattern DBs

- Since we can only take \(\text{max} \)
 - Diminishing returns on additional DBs
- Would like to be able to \textit{add} values

Disjoint Pattern DBs

- Partition tiles into disjoint sets
 - For each set, precompute table
 - E.g. 8 tile DB has 519 million entries
 - And 7 tile DB has 58 million
- During search
 - Look up heuristic values for each set
 - \textit{Can add values without overestimating!}
- Manhattan distance is a special case of this idea where each set is a single tile

Performance

- 15 Puzzle: 2000x speedup vs Manhattan dist
 - IDA* with the two DBs shown previously solves 15 Puzzles optimally in 30 milliseconds
- 24 Puzzle: 12 million x speedup vs Manhattan
 - IDA* can solve random instances in 2 days.
 - Requires 4 DBs as shown
 - Each DB has 128 million entries
 - Without PDBs: 65,000 years