Recap: Search

- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test

- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)

- Search Algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Action: Flip over the top \(n \) pancakes

Cost: Number of pancakes flipped

Example: Pancake Problem

State space graph with costs as weights
General Tree Search

- **Action:** flip top two
- **Cost:** 2
- **Path to reach goal:** Flip four, flip three
 - **Total cost:** 7

Example: Heuristic Function

- Heuristic: the largest pancake that is still out of place

What is a Heuristic?

- **An estimate** of how close a state is to a goal
- **Designed for a particular search problem**

- **Examples:** Manhattan distance: 10 + 5 = 15
 - Euclidean distance: \(\sqrt{10^2 + 5^2} = 11.2 \)

Greedy Search

- **Strategy:** expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- **A common case:**
 - Best-first takes you straight to the (wrong) goal

- **Worst-case:** like a badly-guided DFS
Greedy Search

- Expand the node that seems closest...

- What can go wrong?

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost $g(n)$
- Greedy orders by goal proximity, or forward cost $h(n)$

- A* Search orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg Grenager

When should A* terminate?

- Should we stop when we enqueue a goal?

- No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good path cost
- We need estimates to be less than or equal to actual costs!

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:

$$0 \leq h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

- Examples:

- Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Optimality of A* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B

Proof:
- Imagine B is on the fringe
- Some ancestor \(n \) of A is on the fringe, too (maybe A!)
- Claim: \(n \) will be expanded before B
 1. \(f(n) \) is less or equal to \(f(A) \)
 2. \(f(A) \) is less than \(f(B) \)

\[g(A) < g(B) \]
\[f(A) < f(B) \]

\(h = 0 \) at a goal

\(f(n) = g(n) + h(n) \)
\(f(n) \leq g(A) \)
\(g(A) = f(A) \)

All ancestors of A expand before B
- A expands before B
- A* search is optimal

UCS vs A* Contours

- Uniform-cost expanded in all directions
- A* expands mainly toward the goal, but hedges its bets to ensure optimality

Which Algorithm?

- Uniform cost search (UCS):

![UCS Contours](image)

![A* Contours](image)
Which Algorithm?

- A*, Manhattan Heuristic:

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available
- Inadmissible heuristics are often useful too

Creating Heuristics

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
 - h(start) = 8
 - Is it admissible?

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance:
 - h(start) = 3 + 1 + 2 + 2 + 3 + 3 + 5 + 8 = 22
 - Admissible?
8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
- What’s wrong with it?
- With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

- Dominance: $h_a(n) \geq h_c(n)$
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 $h(n) = \max(h_a(n), h_b(n))$
- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- In BFS, for example, we shouldn’t bother expanding some nodes (which, and why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states (“closed set”)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
 - Hint: in python, store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?
A* Graph Search Gone Wrong

State space graph

Search tree

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 \(h(A) \leq \text{actual cost from } A \text{ to } G \)
 - Consistency: heuristic “arc” cost ≤ actual cost for each arc
 \(h(A) - h(C) \leq \text{cost}(A \text{ to } C) \)
 - Consequences of consistency:
 - The f-value along a path never decreases
 \[f(A) \leq g(A) + h(A) \leq g(A) + \text{cost}(A \text{ to } C) + h(C) \]
 - A* graph search is optimal

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Nodes are popped with non-decreasing f-scores: for all \(n, n' \) with \(n' \) popped after \(n \):
 \(f(n') \geq f(n) \)
 - Proof by induction: (1) always pop the lowest f-score from the fringe, (2) all new nodes have larger (or equal) scores, (3) add them to the fringe, (4) repeat!
 - For every state \(s \), nodes that reach \(s \) optimally are expanded before nodes that reach \(s \) sub-optimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (\(h = 0 \))
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (\(h = 0 \) is consistent)
 - Consistency implies admissibility
 - In general, natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems