CSE 473: Artificial Intelligence

Reinforcement Learning

Instructor: Luke Zettlemoyer

University of Washington

[These slides were adapted from Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Reinforcement Learning
Reinforcement Learning

Basic idea:
- Receive feedback in the form of rewards
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!
Example: Learning to Walk

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

[Video: AIBO WALK – initial]

[Kohl and Stone, ICRA 2004]
Example: Learning to Walk

Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – training]
Example: Learning to Walk

[Video: AIBO WALK – finished]
Example: Sidewinding
Example: Toddler Robot

[Video: TODDLER – 40s]

[Tedrake, Zhang and Seung, 2005]
The Crawler!
Video of Demo Crawler Bot
Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per state) A
 - A model $T(s,a,s')$
 - A reward function $R(s,a,s')$

- Still looking for a policy $\pi(s)$

- New twist: don’t know T or R
 - I.e. we don’t know which states are good or what the actions do
 - Must actually try actions and states out to learn
Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning
Model-Based Learning
Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1: Learn empirical MDP model**
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{\mathcal{T}}(s, a, s')$
 - Discover each $\hat{\mathcal{R}}(s, a, s')$ when we experience (s, a, s')

- **Step 2: Solve the learned MDP**
 - For example, use value iteration, as before
Example: Model-Based Learning

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Learned Model

$\hat{T}(s, a, s')$
- $T(B, \text{east}, C) = 1.00$
- $T(C, \text{east}, D) = 0.75$
- $T(C, \text{east}, A) = 0.25$
- ...

$\hat{R}(s, a, s')$
- $R(B, \text{east}, C) = -1$
- $R(C, \text{east}, D) = -1$
- $R(D, \text{exit}, x) = +10$
- ...

Assume: $\gamma = 1$
Example: Expected Age

Goal: Compute expected age of CSE 473 students

<table>
<thead>
<tr>
<th>Known P(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E[A] = \sum_a P(a) \cdot a = 0.35 \times 20 + \ldots$</td>
</tr>
</tbody>
</table>

Without P(A), instead collect samples $[a_1, a_2, \ldots a_N]$

Unknown P(A): “Model Based”

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_a \hat{P}(a) \cdot a$$

Why does this work? Because eventually you learn the right model.

Unknown P(A): “Model Free”

$$E[A] \approx \frac{1}{N} \sum_i a_i$$

Why does this work? Because samples appear with the right frequencies.
Model-Free Learning
Preview: Gridworld Reinforcement Learning
Passive Reinforcement Learning
Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy $\pi(s)$
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - **Goal:** learn the state values

- **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is **NOT** offline planning! You actually take actions in the world.
Direct Evaluation

- **Goal:** Compute values for each state under π
- **Idea:** Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- **This is called direct evaluation**
Example: Direct Evaluation

Assume: $\gamma = 1$

Input Policy π

Observed Episodes (Training)

Episode 1
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 2
- B, east, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 3
- E, north, C, -1
- C, east, D, -1
- D, exit, x, +10

Episode 4
- E, north, C, -1
- C, east, A, -1
- A, exit, x, -10

Output Values

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-10</td>
<td>+8</td>
<td>+4</td>
<td>+10</td>
<td>-2</td>
</tr>
</tbody>
</table>
Problems with Direct Evaluation

- **What’s good about direct evaluation?**
 - It’s easy to understand
 - It doesn’t require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions

- **What bad about it?**
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?
Why Not Use Policy Evaluation?

- **Simplified Bellman updates calculate V for a fixed policy:**
 - Each round, replace V with a one-step-look-ahead layer over V

\[
V_0^\pi(s) = 0
\]

\[
V_{k+1}^\pi(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^\pi(s')]
\]

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!

- **Key question: how can we do this update to V without knowing T and R?**
 - In other words, how to we take a weighted average without knowing the weights?
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:
 $$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s')[R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- Idea: Take samples of outcomes s' (by doing the action!) and average

 $$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$
 $$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$
 $$\ldots$$
 $$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

 $$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$
Temporal Difference Learning
Temporal Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$:
$$ sample = R(s, \pi(s), s') + \gamma V^{\pi}(s') $$

Update to $V(s)$:
$$ V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample $$

Same update:
$$ V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s)) $$
Exponential Moving Average

- Exponential moving average
 - The running interpolation update: \(\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n \)
 - Makes recent samples more important:
 \[
 \bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \ldots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots}
 \]
 - Forgets about the past (distant past values were wrong anyway)

- Decreasing learning rate (alpha) can give converging averages
Example: Temporal Difference Learning

Assume: $\gamma = 1$, $\alpha = 1/2$

$V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^\pi(s') \right]$
Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages.
- However, if we want to turn values into a (new) policy, we’re sunk:

\[
\pi(s) = \arg \max_a Q(s, a)
\]

\[
Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]
\]

- Idea: learn Q-values, not values.
- Makes action selection model-free too!
Active Reinforcement Learning
Full reinforcement learning: optimal policies (like value iteration)
- You don’t know the transitions $T(s,a,s')$
- You don’t know the rewards $R(s,a,s')$
- You choose the actions now
- Goal: learn the optimal policy / values

In this case:
- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens…
Detour: Q-Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- **But Q-values are more useful, so compute them instead**
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ q-values for all q-states:
 \[Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right] \]
Q-Learning

- **Q-Learning: sample-based Q-value iteration**
 \[
 Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]
 \]

- **Learn Q(s,a) values as you go**
 - Receive a sample \((s,a,s',r)\)
 - Consider your old estimate: \(Q(s, a)\)
 - Consider your new sample estimate:
 \[
 \text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a')
 \]
 - Incorporate the new estimate into a running average:
 \[
 Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha)\text{[sample]}
 \]

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]
Q learning with a fixed policy
Video of Demo Q-Learning -- Gridworld
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

- This is called **off-policy learning**

- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions (!)
Exploration vs. Exploitation
How to Explore?

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability $1-\varepsilon$, act on current policy

Problems with random actions?

- You do eventually explore the space, but keep thrashing around once learning is done
- One solution: lower ε over time
- Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]
Gridworld RL: ε-greedy
Gridworld RL: ε-greedy
Video of Demo Q-learning – Epsilon-Greedy – Crawler
Exploration Functions

- **When to explore?**
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- **Exploration function**
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$

 Regular Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} Q(s', a')$

 Modified Q-Update: $Q(s, a) \leftarrow \alpha R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$

 - Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]
Video of Demo Q-learning – Exploration Function – Crawler

average speed: 2.2150025504072404
Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret
Approximate Q-Learning
Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we’ll see it over and over again
Example: Pacman

Let’s say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]
Video of Demo Q-Learning Pacman – Tiny – Watch All
Video of Demo Q-Learning Pacman – Tiny – Silent Train
Video of Demo Q-Learning Pacman – Tricky – Watch All
Feature-Based Representations

- **Solution:** describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - $1 / (\text{dist to dot})^2$
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)
Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

\[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers

- Disadvantage: states may share features but actually be very different in value!
Approximate Q-Learning

\[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- **Q-learning with linear Q-functions:**
 - transition \(= (s, a, r, s') \)
 - difference \(= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a) \)
 - \(Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \)
 - \(w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \)

- **Intuitive interpretation:**
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features

- **Formal justification:** online least squares
Example: Q-Pacman

\[Q(s, a) = 4.0 f_{DOT}(s, a) - 1.0 f_{GST}(s, a) \]

\[f_{DOT}(s, \text{NORTH}) = 0.5 \]
\[f_{GST}(s, \text{NORTH}) = 1.0 \]

\[Q(s, \text{NORTH}) = +1 \]
\[r + \gamma \max_{a'} Q(s', a') = -500 + 0 \]

\[Q(s', \cdot) = 0 \]

\[\text{difference} = -501 \]

\[w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5 \]
\[w_{GST} \leftarrow -1.0 + \alpha [-501] 1.0 \]

\[Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a) \]

[Demo: approximate Q-learning pacman (L11D10)]
Video of Demo Approximate Q-Learning -- Pacman
Q-Learning and Least Squares
Linear Approximation: Regression*

Prediction:
\[\hat{y} = w_0 + w_1 f_1(x) \]

Prediction:
\[\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x) \]
Optimization: Least Squares*

\[
\text{total error} = \sum_i (y_i - \hat{y}_i)^2 = \sum_i \left(y_i - \sum_k w_k f_k(x_i) \right)^2
\]
Minimizing Error*

Imagine we had only one point x, with features $f(x)$, target value y, and weights w:

$$ error(w) = \frac{1}{2} \left(y - \sum_k w_k f_k(x) \right)^2 $$

$$ \frac{\partial \text{error}(w)}{\partial w_m} = - \left(y - \sum_k w_k f_k(x) \right) f_m(x) $$

$$ w_m \leftarrow w_m + \alpha \left(y - \sum_k w_k f_k(x) \right) f_m(x) $$

Approximate q update explained:

$$ w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a) $$

“target” \hspace{1cm} “prediction”
Overfitting: Why Limiting Capacity Can Help*
Policy Search
Policy Search

- **Problem:** often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
 - We’ll see this distinction between modeling and prediction again later in the course

- **Solution:** learn policies that maximize rewards, not the values that predict them

- **Policy search:** start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights
Policy Search

- **Simplest policy search:**
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

- **Problems:**
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical

- Better methods exploit lookahead structure, sample wisely, change multiple parameters...
Policy Search
Conclusion

- We’re done with Part I: Search and Planning!

- We’ve seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning

- Next up: Part II: Uncertainty and Learning!