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Probabilis+c	Models	

§  Models	describe	how	(a	por+on	of)	the	world	works	
	
§  Models	are	always	simplifica+ons	

§  May	not	account	for	every	variable	
§  May	not	account	for	all	interac+ons	between	variables	
§  “All	models	are	wrong;	but	some	are	useful.”	

					–	George	E.	P.	Box	

§  What	do	we	do	with	probabilis+c	models?	
§  We	(or	our	agents)	need	to	reason	about	unknown	

variables,	given	evidence	
§  Example:	explana+on	(diagnos+c	reasoning)	
§  Example:	predic+on	(causal	reasoning)	
§  Example:	value	of	informa+on	



Independence	



§  Two	variables	are	independent	if:	

§  This	says	that	their	joint	distribu+on	factors	into	a	product	two	
simpler	distribu+ons	

§  Another	form:	
	

	 		

§  We	write:		

§  Independence	is	a	simplifying	modeling	assump2on	

§  Empirical	joint	distribu+ons:	at	best	“close”	to	independent	

§  What	could	we	assume	for	{Weather,	Traffic,	Cavity,	Toothache}?	

Independence	



Example:	Independence?	

T	 W	 P	

hot	 sun	 0.4	

hot	 rain	 0.1	

cold	 sun	 0.2	

cold	 rain	 0.3	

T	 W	 P	

hot	 sun	 0.3	

hot	 rain	 0.2	

cold	 sun	 0.3	

cold	 rain	 0.2	

T	 P	

hot	 0.5	

cold	 0.5	

W	 P	

sun	 0.6	

rain	 0.4	



Example:	Independence	

§  N	fair,	independent	coin	flips:	

H	 0.5	

T	 0.5	

H	 0.5	

T	 0.5	

H	 0.5	

T	 0.5	



Condi+onal	Independence	



Condi+onal	Independence	
§  P(Toothache,	Cavity,	Catch)	

§  If	I	have	a	cavity,	the	probability	that	the	probe	catches	in	it	
doesn't	depend	on	whether	I	have	a	toothache:	
§  P(+catch	|	+toothache,	+cavity)	=	P(+catch	|	+cavity)	

§  The	same	independence	holds	if	I	don’t	have	a	cavity:	
§  P(+catch	|	+toothache,	-cavity)	=	P(+catch|	-cavity)	

§  Catch	is	condi2onally	independent	of	Toothache	given	Cavity:	
§  P(Catch	|	Toothache,	Cavity)	=	P(Catch	|	Cavity)	

§  Equivalent	statements:	
§  P(Toothache	|	Catch	,	Cavity)	=	P(Toothache	|	Cavity)	
§  P(Toothache,	Catch	|	Cavity)	=	P(Toothache	|	Cavity)	P(Catch	|	Cavity)	
§  One	can	be	derived	from	the	other	easily	



Condi+onal	Independence	

§  Uncondi+onal	(absolute)	independence	very	rare	(why?)	

§  Condi2onal	independence	is	our	most	basic	and	robust	form	
of	knowledge	about	uncertain	environments.	

§  X	is	condi+onally	independent	of	Y	given	Z	

						if	and	only	if:	
	
	
						or,	equivalently,	if	and	only	if	



Condi+onal	Independence	

§  What	about	this	domain:	

§  Traffic	
§  Umbrella	
§  Raining	



Condi+onal	Independence	

§  What	about	this	domain:	

§  Fire	
§  Smoke	
§  Alarm	



Condi+onal	Independence	and	the	Chain	Rule	

§  Chain	rule:		

§  Trivial	decomposi+on:	

§  With	assump+on	of	condi+onal	independence:	

§  Bayes’nets	/	graphical	models	help	us	express	condi+onal	independence	assump+ons	



Ghostbusters	Chain	Rule	

§  Each	sensor	depends	only	
on	where	the	ghost	is	

§  That	means,	the	two	sensors	are	
condi+onally	independent,	given	the	
ghost	posi+on	

§  T:	Top	square	is	red	
B:	Bo?om	square	is	red	
G:	Ghost	is	in	the	top	

	
§  Givens:	

	P(	+g	)	=	0.5	
	P(		-g	)	=	0.5	
	P(	+t		|	+g	)	=	0.8	
P(	+t		|		-g	)	=	0.4	
P(	+b	|	+g	)	=	0.4	
P(	+b	|		-g	)	=	0.8	

P(T,B,G)	=	P(G)	P(T|G)	P(B|G)	

T	 B	 G	 P(T,B,G)	

+t	 +b	 +g	 0.16	

+t	 +b	 -g	 0.16	

+t	 -b	 +g	 0.24	

+t	 -b	 -g	 0.04	

 -t	 +b	 +g	 0.04	

-t	 +b	 -g	 0.24	

-t	 -b	 +g	 0.06	

-t	 -b	 -g	 0.06	



Bayes’Nets:	Big	Picture	



Bayes’	Nets:	Big	Picture	

§  Two	problems	with	using	full	joint	distribu+on	tables	
as	our	probabilis+c	models:	
§  Unless	there	are	only	a	few	variables,	the	joint	is	WAY	too	

big	to	represent	explicitly	
§  Hard	to	learn	(es+mate)	anything	empirically	about	more	

than	a	few	variables	at	a	+me	

§  Bayes’	nets:	a	technique	for	describing	complex	joint	
distribu+ons	(models)	using	simple,	local	
distribu+ons	(condi+onal	probabili+es)	
§  More	properly	called	graphical	models	
§  We	describe	how	variables	locally	interact	
§  Local	interac+ons	chain	together	to	give	global,	indirect	

interac+ons	
§  For	about	10	min,	we’ll	be	vague	about	how	these	

interac+ons	are	specified	



Example	Bayes’	Net:	Insurance	



Example	Bayes’	Net:	Car	



Graphical	Model	Nota+on	

§  Nodes:	variables	(with	domains)	
§  Can	be	assigned	(observed)	or	unassigned	

(unobserved)	

§  Arcs:	interac+ons	
§  Indicate	“direct	influence”	between	variables	
§  Formally:	encode	condi+onal	independence	

(more	later)	

§  For	now:	imagine	that	arrows	mean	
direct	causa+on	(in	general,	they	don’t!)	



Example:	Coin	Flips	

§  N	independent	coin	flips	

§  No	interac+ons	between	variables:	absolute	independence	

X1	 X2	 Xn	



Example:	Traffic	

§  Variables:	
§  R:	It	rains	
§  T:	There	is	traffic	

§  Model	1:	independence	

	

§  Why	is	an	agent	using	model	2	be?er?	

R	

T	

R	

T	

	
	
	

§  Model	2:	rain	causes	traffic	



§  Let’s	build	a	causal	graphical	model!	
§  Variables	

§  T:	Traffic	
§  R:	It	rains	
§  L:	Low	pressure	
§  D:	Roof	drips	
§  B:	Ballgame	
§  C:	Cavity	

Example:	Traffic	II	



Example:	Alarm	Network	
§  Variables	

§  B:	Burglary	
§  A:	Alarm	goes	off	
§  M:	Mary	calls	
§  J:	John	calls	
§  E:	Earthquake!	



Bayes’	Net	Seman+cs	



Bayes’	Net	Seman+cs	

§  A	set	of	nodes,	one	per	variable	X	

§  A	directed,	acyclic	graph	

§  A	condi+onal	distribu+on	for	each	node	
§  A	collec+on	of	distribu+ons	over	X,	one	for	each	

combina+on	of	parents’	values	

§  CPT:	condi+onal	probability	table	

§  Descrip+on	of	a	noisy	“causal”	process	

A1	

X	

An	

A	Bayes	net	=	Topology	(graph)	+	Local	Condi2onal	Probabili2es	



Probabili+es	in	BNs	

§  Bayes’	nets	implicitly	encode	joint	distribu+ons	

§  As	a	product	of	local	condi+onal	distribu+ons	

§  To	see	what	probability	a	BN	gives	to	a	full	assignment,	mul+ply	all	the	
relevant	condi+onals	together:	

§  Example:	



Probabili+es	in	BNs	

§  Why	are	we	guaranteed	that	seyng	

				results	in	a	proper	joint	distribu+on?			

§  Chain	rule	(valid	for	all	distribu+ons):		

§  Assume	condi+onal	independences:		

						à	Consequence:	
	

§  Not	every	BN	can	represent	every	joint	distribu+on	
§  The	topology	enforces	certain	condi+onal	independencies	



Only	distribu2ons	whose	variables	are	absolutely	independent	can	be	
represented	by	a	Bayes’	net	with	no	arcs.	

Example:	Coin	Flips	

h	 0.5	

t	 0.5	

h	 0.5	

t	 0.5	

h	 0.5	

t	 0.5	

X1	 X2	 Xn	



Example:	Traffic	

R	

T	

+r	 1/4	

-r	 3/4	

	+r	 +t	 3/4	

-t	 1/4	

-r	 +t	 1/2	

-t	 1/2	



Example:	Traffic	

§  Causal	direc+on	

R	

T	

+r	 1/4	

-r	 3/4	

+r	 +t	 3/4	

-t	 1/4	

-r	 +t	 1/2	

-t	 1/2	

+r	 +t	 3/16	

+r	 -t	 1/16	

-r	 +t	 6/16	

-r	 -t	 6/16	



Example:	Reverse	Traffic	

§  Reverse	causality?	

T	

R	

+t	 9/16	

-t	 7/16	

+t	 +r	 1/3	

-r	 2/3	

-t	 +r	 1/7	

-r	 6/7	

+r	 +t	 3/16	

+r	 -t	 1/16	

-r	 +t	 6/16	

-r	 -t	 6/16	



Causality?	

§  When	Bayes’	nets	reflect	the	true	causal	pa?erns:	
§  O{en	simpler	(nodes	have	fewer	parents)	
§  O{en	easier	to	think	about	
§  O{en	easier	to	elicit	from	experts	

§  BNs	need	not	actually	be	causal	
§  Some+mes	no	causal	net	exists	over	the	domain	

(especially	if	variables	are	missing)	
§  E.g.	consider	the	variables	Traffic	and	Drips	
§  End	up	with	arrows	that	reflect	correla+on,	not	causa+on	

§  What	do	the	arrows	really	mean?	
§  Topology	may	happen	to	encode	causal	structure	
§  Topology	really	encodes	condi+onal	independence	



Example:	Alarm	Network	
B	 P(B)	

+b	 0.001	

-b	 0.999	

E	 P(E)	

+e	 0.002	

-e	 0.998	

B	 E	 A	 P(A|B,E)	

+b	 +e	 +a	 0.95	

+b	 +e	 -a	 0.05	

+b	 -e	 +a	 0.94	

+b	 -e	 -a	 0.06	

-b	 +e	 +a	 0.29	

-b	 +e	 -a	 0.71	

-b	 -e	 +a	 0.001	

-b	 -e	 -a	 0.999	

A	 J	 P(J|A)	

+a	 +j	 0.9	

+a	 -j	 0.1	

-a	 +j	 0.05	

-a	 -j	 0.95	

A	 M	 P(M|A)	

+a	 +m	 0.7	

+a	 -m	 0.3	

-a	 +m	 0.01	

-a	 -m	 0.99	

B	 E	

A	

M	J	



Example:	Alarm	Network	
B	 P(B)	

+b	 0.001	

-b	 0.999	

E	 P(E)	

+e	 0.002	

-e	 0.998	

B	 E	 A	 P(A|B,E)	

+b	 +e	 +a	 0.95	

+b	 +e	 -a	 0.05	

+b	 -e	 +a	 0.94	

+b	 -e	 -a	 0.06	

-b	 +e	 +a	 0.29	

-b	 +e	 -a	 0.71	

-b	 -e	 +a	 0.001	

-b	 -e	 -a	 0.999	

A	 J	 P(J|A)	

+a	 +j	 0.9	

+a	 -j	 0.1	

-a	 +j	 0.05	

-a	 -j	 0.95	

A	 M	 P(M|A)	

+a	 +m	 0.7	

+a	 -m	 0.3	

-a	 +m	 0.01	

-a	 -m	 0.99	

B	 E	

A	

M	J	



Size	of	a	Bayes’	Net	

§  How	big	is	a	joint	distribu+on	over	N	
Boolean	variables?	

2N	

§  How	big	is	an	N-node	net	if	nodes	
have	up	to	k	parents?	

O(N	*	2k+1)	
	

§  Both	give	you	the	power	to	calculate	

§  BNs:	Huge	space	savings!	

§  Also	easier	to	elicit	local	CPTs	

§  Also	faster	to	answer	queries	(coming) 		



Bayes’	Nets	

§  So	far:	how	a	Bayes’	net	encodes	a	joint	
distribu+on	

§  Next:	how	to	answer	queries	about	that	
distribu+on	
§  Today:		

§  First	assembled	BNs	using	an	intui+ve	no+on	of	
condi+onal	independence	as	causality	

§  Then	saw	that	key	property	is	condi+onal	independence	
§  Main	goal:	answer	queries	about	condi+onal	

independence	and	influence		

§  A{er	that:	how	to	answer	numerical	queries	
(inference)	



Bayes’	Nets	

§  Representa+on	

§  Condi+onal	Independences	

§  Probabilis+c	Inference	

§  Learning	Bayes’	Nets	from	Data	



Condi+onal	Independence	

§  X	and	Y	are	independent	if	

§  X	and	Y	are	condi+onally	independent	given	Z	

§  (Condi+onal)	independence	is	a	property	of	a	distribu+on	

§  Example:		



Bayes	Nets:	Assump+ons	

§  Assump+ons	we	are	required	to	make	to	define	the	
Bayes	net	when	given	the	graph:	

§  Beyond	above	“chain	rule	à	Bayes	net”	condi+onal	
independence	assump+ons		

§  O{en	addi+onal	condi+onal	independences	

§  They	can	be	read	off	the	graph	

§  Important	for	modeling:	understand	assump+ons	made	
when	choosing	a	Bayes	net	graph	

P (xi|x1 · · ·xi�1) = P (xi|parents(Xi))



Example	

§  Condi+onal	independence	assump+ons	directly	from	simplifica+ons	in	chain	rule:	

§  Addi+onal	implied	condi+onal	independence	assump+ons?	

X	 Y	 Z	 W	



Independence	in	a	BN	

§  Important	ques+on	about	a	BN:	
§  Are	two	nodes	independent	given	certain	evidence?	
§  If	yes,	can	prove	using	algebra	(tedious	in	general)	
§  If	no,	can	prove	with	a	counter	example	
§  Example:	

§  Ques+on:	are	X	and	Z	necessarily	independent?	
§  Answer:	no.		Example:	low	pressure	causes	rain,	which	causes	traffic.	
§  X	can	influence	Z,	Z	can	influence	X	(via	Y)	
§  Addendum:	they	could	be	independent:	how?	

X	 Y	 Z	



D-separa+on:	Outline	



D-separa+on:	Outline	

§  Study	independence	proper+es	for	triples	

§  Analyze	complex	cases	in	terms	of	member	triples	

§  D-separa+on:	a	condi+on	/	algorithm	for	answering	such	
queries	



Causal	Chains	

§  This	configura+on	is	a	“causal	chain”	

X:	Low	pressure										Y:	Rain																										Z:	Traffic	

§  Guaranteed	X	independent	of	Z	?			No!	

§  One	example	set	of	CPTs	for	which	X	is	not	
independent	of	Z	is	sufficient	to	show	this	
independence	is	not	guaranteed.	

§  Example:	

§  Low	pressure	causes	rain	causes	traffic,	
				high	pressure	causes	no	rain	causes	no		
				traffic	

§  In	numbers:	
		
				P(	+y	|	+x	)	=	1,	P(	-y	|	-	x	)	=	1,	
				P(	+z	|	+y	)	=	1,	P(	-z	|	-y	)	=	1	

	



Causal	Chains	

§  This	configura+on	is	a	“causal	chain”	 §  Guaranteed	X	independent	of	Z	given	Y?	

§  Evidence	along	the	chain	“blocks”	the	
influence	

Yes!	

X:	Low	pressure										Y:	Rain																										Z:	Traffic	



Common	Cause	

§  This	configura+on	is	a	“common	cause”	 §  Guaranteed	X	independent	of	Z	?			No!	

§  One	example	set	of	CPTs	for	which	X	is	not	
independent	of	Z	is	sufficient	to	show	this	
independence	is	not	guaranteed.	

§  Example:	

§  Project	due	causes	both	forums	busy		
					and	lab	full		

§  In	numbers:	
		
									P(	+x	|	+y	)	=	1,	P(	-x	|	-y	)	=	1,	
						P(	+z	|	+y	)	=	1,	P(	-z	|	-y	)	=	1	

	

Y:	Project	
due	

X:	Forums	
busy	 Z:	Lab	full	



Common	Cause	

§  This	configura+on	is	a	“common	cause”	 §  Guaranteed	X	and	Z	independent	given	Y?	

§  Observing	the	cause	blocks	influence	
between	effects.	

Yes!	

Y:	Project	
due	

X:	Forums	
busy	 Z:	Lab	full	



Common	Effect	
§  Last	configura+on:	two	causes	of	one	

effect	(v-structures)	

Z:	Traffic	

§  Are	X	and	Y	independent?	
§  Yes:	the	ballgame	and	the	rain	cause	traffic,	but	

they	are	not	correlated	

§  S+ll	need	to	prove	they	must	be	(try	it!)	

§  Are	X	and	Y	independent	given	Z?	

§  No:	seeing	traffic	puts	the	rain	and	the	ballgame	in	
compe++on	as	explana+on.	

§  This	is	backwards	from	the	other	cases	

§  Observing	an	effect	ac+vates	influence	between	
possible	causes.	

X:	Raining	 Y:	Ballgame	



The	General	Case	



The	General	Case	

§  General	ques+on:	in	a	given	BN,	are	two	variables	independent	
(given	evidence)?	

§  Solu+on:	analyze	the	graph	

§  Any	complex	example	can	be	broken	
				into	repe++ons	of	the	three	canonical	cases	

	



Reachability	

§  Recipe:	shade	evidence	nodes,	look	
for	paths	in	the	resul+ng	graph	

§  A?empt	1:	if	two	nodes	are	connected	
by	an	undirected	path	not	blocked	by	
a	shaded	node,	they	are	condi+onally	
independent	

§  Almost	works,	but	not	quite	
§  Where	does	it	break?	
§  Answer:	the	v-structure	at	T	doesn’t	count	

as	a	link	in	a	path	unless	“ac+ve”	

R	

T	

B	

D	

L	



Ac+ve	/	Inac+ve	Paths	

§  Ques+on:	Are	X	and	Y	condi+onally	independent	given	
evidence	variables	{Z}?	
§  Yes,	if	X	and	Y	“d-separated”	by	Z	
§  Consider	all	(undirected)	paths	from	X	to	Y	

§  No	ac+ve	paths	=	independence!	

§  A	path	is	ac+ve	if	each	triple	is	ac+ve:	
§  Causal	chain	A	→	B	→	C	where	B	is	unobserved	(either	direc+on)	
§  Common	cause	A	←	B	→	C	where	B	is	unobserved	
§  Common	effect	(aka	v-structure)	

	A	→	B	←	C	where	B	or	one	of	its	descendents	is	observed	
		

§  All	it	takes	to	block	a	path	is	a	single	inac+ve	segment	
	

		

Ac+ve	Triples	 Inac+ve	Triples	



§  Query: 		

§  Check	all	(undirected!)	paths	between								and		
§  If	one	or	more	ac+ve,	then	independence	not	guaranteed	

				

§  Otherwise	(i.e.	if	all	paths	are	inac+ve),	
				then	independence	is	guaranteed	

D-Separa+on	

Xi �� Xj |{Xk1 , ..., Xkn}

Xi �� Xj |{Xk1 , ..., Xkn}

?	

Xi �� Xj |{Xk1 , ..., Xkn}



Example	

Yes	 R 

T 

B 

T’ 



Example	

R 

T 

B 

D 

L 

T’ 

Yes	

Yes	

Yes	



Example	

§  Variables:	
§  R:	Raining	
§  T:	Traffic	
§  D:	Roof	drips	
§  S:	I’m	sad	

§  Ques+ons:	
T 

S 

D 

R 

Yes	



Structure	Implica+ons	

§  Given	a	Bayes	net	structure,	can	run	d-
separa+on	algorithm	to	build	a	complete	list	of	
condi+onal	independences	that	are	necessarily	
true	of	the	form	

§  This	list	determines	the	set	of	probability	
distribu+ons	that	can	be	represented		

	

Xi �� Xj |{Xk1 , ..., Xkn}



Compu+ng	All	Independences	

X	

Y	

Z	

X	

Y	

Z	

X	

Y	

Z	

X	

Y	

Z	



X	
Y	

Z	

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

Topology	Limits	Distribu+ons	

§  Given	some	graph	topology	
G,	only	certain	joint	
distribu+ons	can	be	
encoded	

§  The	graph	structure	
guarantees	certain	
(condi+onal)	independences	

§  (There	might	be	more	
independence)	

§  Adding	arcs	increases	the	
set	of	distribu+ons,	but	has	
several	costs	

§  Full	condi+oning	can	encode	
any	distribu+on	

X	

Y	

Z	

X	

Y	

Z	

X	

Y	

Z	

{X �� Z | Y }

X	

Y	

Z	 X	

Y	

Z	 X	

Y	

Z	

X	

Y	

Z	 X	

Y	

Z	 X	

Y	

Z	

{}



Bayes	Nets	Representa+on	Summary	

§  Bayes	nets	compactly	encode	joint	distribu+ons	

§  Guaranteed	independencies	of	distribu+ons	can	be	
deduced	from	BN	graph	structure	

§  D-separa+on	gives	precise	condi+onal	independence	
guarantees	from	graph	alone	

§  A	Bayes’	net’s	joint	distribu+on	may	have	further	
(condi+onal)	independence	that	is	not	detectable	un+l	
you	inspect	its	specific	distribu+on	



Bayes’	Nets	

§  Representa+on	
§  Condi+onal	Independences	
§  Probabilis+c	Inference	

§  Enumera+on	(exact,	exponen+al	complexity)	
§  Variable	elimina+on	(exact,	worst-case	

	 	exponen+al	complexity,	o{en	be?er)	
§  Probabilis+c	inference	is	NP-complete	
§  Sampling	(approximate)	

§  Learning	Bayes’	Nets	from	Data	


