Hidden Markov Models

Two random variable at each time step
- Hidden state, X_i
- Observation, E_i

Conditional Independences
Dynamics don’t change
- E.g., $P(X_2 \mid X_1) = P(X_{18} \mid X_{17})$
Given
- Parameters
- Evidence $E_{1:n} = e_{1:n}$

Inference problems include:
- Filtering, find $P(X_t|e_{1:t})$ for all t
 - Exact Inference
 - Particle Filter
- Smoothing, find $P(X_t|e_{1:n})$ for all t
- Most probable explanation, find
 $x^{*}_{1:n} = \arg\max_{x_{1:n}} P(x_{1:n}|e_{1:n})$

Exact Inference: Forward Algorithm

$P(X_1|e_1) = \frac{P(x_1,e_1)}{P(e_1)}$

$P(x_1|e_1) \propto P(x_1,e_1)$

$P(x_1) = \sum_{x_1} P(x_1,x_2)$

$P(x_2|e_1) = \sum_{x_1} P(x_1|x_2|x_1)$
Particle Filtering: Summary

Particles: track samples of states rather than an explicit distribution

Elapse

Particles: track samples of states rather than an explicit distribution

Weight

Particles:

Resample

Particles:

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

SCORE: 0
Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Which Algorithm?

Exact filter, uniform initial beliefs
Complexity of the Forward Algorithm?

- We are given evidence at each time and want to know
 \[B_t(X) = P(X_t|e_{1:t}) \]

- We use the single (time-passage + observation) updates:
 \[P(x_t|e_{1:t}) \propto X P(e_t|x_t) \sum_{x_{t-1}} P(x_t|x_{t-1})P(x_{t-1}, e_{1:t-1}) \]

- Complexity? \(O(|X|^2) \) time & \(O(X) \) space

But \(|X|\) is *exponential* in the number of state variables

Why Does \(|X|\) Grow?

- 1 Ghost: \(k \) (eg 9) possible positions in maze
- 2 Ghosts: \(k^2 \) combinations
- N Ghosts: \(k^N \) combinations
HMM Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state
What about Conditional Independence in Snapshot

- Can we do something here?
- Factor X into product of (conditionally) independent random vars?

X_3

- Maybe also factor E

E_3

Yes! with Bayes Nets

X_3
Bayes’Nets: Big Picture

Bayes’ Nets

- Representation & Semantics
- Conditional Independences
- Probabilistic Inference
- Learning Bayes’ Nets from Data
Bayes Nets = a Kind of Probabilistic Graphical Model

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."
 – George E. P. Box
- What do we do with probabilistic models?
 - We (or our agents) need to reason about unknown variables, given evidence
 - Example: explanation (diagnostic reasoning)
 - Example: prediction (causal reasoning)
 - Example: value of information

Bayes’ Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes’ nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly … aka probabilistic graphical model
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we’ll be vague about how these interactions are specified
Bayes’ Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents’ values
 $$P(X|a_1 \ldots a_n)$$
 - CPT: conditional probability table
 - Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities
Joint Probabilities from BNs

- **Why are we guaranteed that setting results in a proper joint distribution?**

 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- **Chain rule (valid for all distributions):**

 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|x_1 \ldots x_{i-1}) \]

- **Assume conditional independences:**

 \[P(x_i|x_1, \ldots, x_{i-1}) = P(x_i|\text{parents}(X_i)) \]

 \[\rightarrow \text{Consequence:} \quad P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

- **Every BN represents a joint distribution, but**

- **Not every distribution can be represented by a specific BN**

 - The topology enforces certain conditional independencies
Example: Coin Flips

Only distributions whose variables are absolutely independent can be represented by a Bayes’ net with no arcs.

Example: Traffic

\[P(R) = \begin{array}{c|c}
+r & 1/4 \\
-r & 3/4 \\
\end{array} \]

\[P(T|R) = \begin{array}{c|c|c}
+r & +t & 3/4 \\
+r & -t & 1/4 \\
-r & +t & 1/2 \\
-r & -t & 1/2 \\
\end{array} \]

\[P(+r, -t) = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16} \]
Example: Alarm Network

\[P(+b, -e, +a, -j, +m) = \]

\[P(+b) P(-e) P(+a|b) P(-e) P(-j|a) P(+m|a) = \]

\[0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7 \]
Example: Hidden Markov Models

P(R₀) = 0.4

What Causes Bad Traffic?

- Causal direction

<table>
<thead>
<tr>
<th>P(R₀)</th>
<th>+r</th>
<th>1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-r</td>
<td>3/4</td>
</tr>
</tbody>
</table>

| P(T|R) | +r | +t | 3/4 |
|--------|----|----|-----|
| | +r | -t | 1/4 |
| | -r | +t | 1/2 |
| | -r | -t | 1/2 |

<table>
<thead>
<tr>
<th>P(T,R)</th>
<th>+r</th>
<th>+t</th>
<th>3/16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+r</td>
<td>-t</td>
<td>1/16</td>
</tr>
<tr>
<td></td>
<td>-r</td>
<td>+t</td>
<td>6/16</td>
</tr>
<tr>
<td></td>
<td>-r</td>
<td>-t</td>
<td>6/16</td>
</tr>
</tbody>
</table>
Example: Reverse Traffic

- **Reverse causality?**

| $P(T)$ |
| +t | 9/16
| -t | 7/16

| $P(R|T)$ |
| +t +r | 1/3
| -r | 2/3
| -t +r | 1/7
| -r | 6/7

| $P(T, R)$ |
| +r +t | 3/16
| +r -t | 1/16
| -r +t | 6/16
| -r -t | 6/16

Causality?

- **When Bayes’ nets reflect the true causal patterns:**
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts

- **BNs need not actually be causal**
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables *Traffic* and *Drips*
 - End up with arrows that reflect correlation, not causation

- **What do the arrows really mean?**
 - Topology may happen to encode causal structure
 - Topology really encodes conditional independence
 $$P(x_i|x_1, \ldots x_{i-1}) = P(x_i|\text{parents}(X_i))$$
Summary: Bayes’ Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents’ values
 \[P(X|a_1 \ldots a_n) \]
- Bayes’ nets compactly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
 \[P(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} P(x_i|\text{parents}(X_i)) \]

Size of a Bayes’ Net

- How big is a joint distribution over N Boolean variables?
 \(2^N \)
- How big is an N-node net if nodes have up to k parents?
 \(O(N \times 2^k) \)
- Both give you the power to calculate
 \[P(X_1, X_2, \ldots, X_n) \]
- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)
What’s Next with Bayes’ Nets

Questions we can ask:

- **Definition:** $P(X = x)$
- **Inference:** given a fixed BN, what is $P(X | e)$?
- **Representation:** given a BN graph, what kinds of distributions can it encode?
- **Modeling:** what BN is most appropriate for a given domain?
- **Learning:** Given data, what is best BN encoding?

Bayes’ Nets

- **Representation**
 - Special case: HMMs & DBNs
 - Conditional Independences
 - Probabilistic Inference
 - Learning Bayes’ Nets from Data
Dynamic Bayes Nets

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs
DBN Particle Filters

- A particle is a complete sample for a time step
- **Initialize**: Generate prior samples for the $t=1$ Bayes net
 - Example particle: $G_1^a = (3,3)$ $G_1^b = (5,3)$
- **Elapsed time**: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3)$ $G_2^b = (6,3)$
- **Observe**: Weight each entire sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a | G_1^a) * P(E_1^b | G_1^b)$
- **Resample**: Select prior samples (tuples of values) in proportion to their likelihood

Conditional Independence in a BN

- **Important question about a BN**: Are two nodes independent *given certain evidence*?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

```
X ─ Y ─ Z
```

- Question 1: are X and Z *necessarily* independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)