Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s' | s, a)$ (or $T(s, a, s')$)
 - Rewards $R(s, a, s')$ (and discount γ)

- **MDP quantities so far:**
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs

- Value Iteration
 - Asynchronous VI
- Policy Iteration
- Reinforcement Learning

\[V^* = \text{Optimal Value Function} \]

The value (utility) of a state \(s \):

\[V^*(s) \]

“expected utility starting in \(s \) & acting optimally forever”
<table>
<thead>
<tr>
<th>Q*</th>
<th>The value (utility) of the q-state (s,a):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Q^*(s,a))</td>
</tr>
<tr>
<td></td>
<td>“expected utility of 1) starting in state (s)</td>
</tr>
<tr>
<td></td>
<td>2) taking action (a)</td>
</tr>
<tr>
<td></td>
<td>3) acting optimally forever after that”</td>
</tr>
<tr>
<td></td>
<td>(Q^*(s,a) = \text{reward from executing } a \text{ in } s \text{ then ending in } s')</td>
</tr>
<tr>
<td></td>
<td>plus... discounted value of (V^*(s'))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\pi^*)</th>
<th>Specifies The Optimal Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi^*(s) = \text{optimal action from state } s)</td>
<td></td>
</tr>
</tbody>
</table>
The Bellman Equations

How to be optimal:
Step 1: Take correct first action
Step 2: Keep being optimal

Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over.
Gridworld: \(Q^* \)

Q-VALUES AFTER 100 ITERATIONS

Gridworld Values V* \(V^*(s) = \max_a Q^*(s, a) \)

VALUES AFTER 100 ITERATIONS
No End in Sight...

- We’re doing way too much work with expectimax!

- Problem 1: States are repeated
 - Idea: Only compute needed quantities once
 - Like graph search (vs. tree search)

- Problem 2: Tree goes on forever
 - Rewards @ each step → V changes
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$

Time-Limited Values

- Key idea: *time-limited values*

- Define $V_\ell(s)$ to be the optimal value of s if the game ends in ℓ more time steps
 - Equivalently, it’s what a depth-ℓ expectimax would give from s
Value Iteration

- For all states, initialize $V_0(s) = 0$ (no time steps left means an expected reward of zero)
- Repeat
 - $K += 1$
 - $Q_{k+1}(s, a) = \Sigma_{s'} T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$
 - $V_{k+1}(s) = \text{Max}_a Q_{k+1}(s, a)$

- Repeat until $|V_{k+1}(s) - V_k(s)| < \epsilon$, for all states “convergence”

Called a “Bellman Backup”

Successive approximation; dynamic programming
Example: Value Iteration

Assume no discount ($\gamma=1$) to keep math simple!

$$Q_{k+1}(s, a) = \Sigma_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) = \max_a Q_{k+1}(s, a)$$

Example: Value Iteration

Assume no discount ($\gamma=1$) to keep math simple!

$$V_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$V_1 = \begin{bmatrix} \text{Value} \end{bmatrix}$$

$$V_2 = \begin{bmatrix} \text{Value} \end{bmatrix}$$

$$Q_{k+1}(s, a) = \Sigma_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) = \max_a Q_{k+1}(s, a)$$
Example: Value Iteration

$Q(s, a)$

V_0

V_1

V_2

$Q_k(s, a) = \Sigma_s T(s, a, s') [R(s, a, s') + \gamma V_k(s')]$

$V_{k+1}(s) = \text{Max}_a Q_{k+1}(s, a)$

Assume no discount ($\gamma = 1$) to keep math simple!
Example: Value Iteration

<table>
<thead>
<tr>
<th>V_0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_1(s,a)$</td>
<td>1, 2</td>
<td>1, -10</td>
<td>0</td>
</tr>
<tr>
<td>V_1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$Q_2(s,a)$</td>
<td>3, 3.5</td>
<td>2.5, -10</td>
<td>0</td>
</tr>
<tr>
<td>V_2</td>
<td>3.5</td>
<td>2.5</td>
<td>0</td>
</tr>
</tbody>
</table>

$Q_k+1(s, a) = \Sigma_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$

$V_{k+1}(s) = \text{Max}_a Q_{k+1}(s, a)$
If agent is in 4,3, it only has one legal action: get jewel. It gets a reward and the game is over. If agent is in the pit, it has only one legal action, die. It gets a penalty and the game is over. Agent does NOT get a reward for moving INTO 4,3.
$k=2$

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=3$

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=6$

VALUES AFTER 6 ITERATIONS

VALUES AFTER 7 ITERATIONS

$k=7$
k=8

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=10

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

VALUES AFTER 11 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Let’s imagine we have the optimal values $V^*(s)$

How should we act?
- In general, it’s not obvious!

We need to do a mini-expectimax (one step)

$$
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]
$$

This is called policy extraction, since it gets the policy implied by the values.
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:

- How should we act?
 - Completely trivial to decide!

 \[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- Important lesson: actions are easier to select from q-values than values!

Value Iteration - Recap

- **For all** \(s \), Initialize \(V_0(s) = 0 \)
 no time steps left means an expected reward of zero

- **Repeat**
 - \(K := 1 \)
 - **Repeat** for all states, \(s \), and all actions, \(a \):

 \[
 Q_{k+1}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]
 \]

 \[
 V_{k+1}(s) = \max_a Q_{k+1}(s, a)
 \]

- **Until** \(|V_{k+1}(s) - V_k(s)| < \epsilon \), **for all** \(s \)
 “convergence”

- **Theorem:** will converge to unique optimal values