CSE 473: Artificial Intelligence

Adversarial Search
Dan Weld

Based on slides from
Dan Klein, Stuart Russell, Pieter Abbeel, Andrew Moore and Luke Zettlemoyer
(best illustrations from ai.berkeley.edu)

Outline

- Adversarial Search
 - Minimax search
 - α-β search
 - Evaluation functions
 - Expectimax

- Reminder:
 - Project 2 due in 5 days
Types of Games

![Game Classification Diagram]

Number of Players? 1, 2, …?

Deterministic Games

- Many possible formalizations, one is:
 - States: S (start at s_0)
 - Players: $P=\{1...N\}$ (usually take turns)
 - Actions: A (may depend on player / state)
 - Transition Function: $S \times A \rightarrow S$
 - Terminal Test: $S \rightarrow \{t,f\}$
 - Terminal Utilities: $S \times P \rightarrow R$

- Solution for a player is a policy: $S \rightarrow A$
Tic-tac-toe Game Tree

Minimax Values

States Under Agent’s Control:

\[V(s) = \max_{s' \in \text{successors}(s)} V(s') \]

States Under Opponent’s Control:

\[V(s') = \min_{s \in \text{successors}(s')} V(s) \]

Terminal States: \(V(s) = \text{known} \)

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu
Minimax Implementation

def min-value(state):
 if leaf?(state), return U(state)
 initialize v = +∞
 for each c in children(state)
 v = min(v, max-value(c))
 return v

def max-value(state):
 if leaf?(state), return U(state)
 initialize v = -∞
 for each c in children(state)
 v = max(v, min-value(c))
 return v

\[V(s) = \max_{s' \in \text{successors}(s)} V(s') \]

\[V(s') = \min_{s' \in \text{successors}(s')} V(s) \]

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu

α-β Pruning Example

Max:

Min:

Progress of search...

Doesn’t matter!
Don’t need to evaluate
Alpha-Beta Quiz

Max:

- a
- d

Min:

- b
- c
- e
- f

Alpha-Beta Quiz 2

Max:

- a
- h

Min:

- b
- e
- i

Max:

- c
- d
- f
- g
- j
- k
- m
- n

Search depth-first
Left to right
Order is important
Do all nodes matter?
\(\alpha - \beta\) Pruning

- \(\alpha\) is MAX’s best choice on path to root
- If \(n\) becomes worse than \(\alpha\), MAX will avoid it, so can stop considering \(n\)’s other children
- Define \(\beta\) similarly for MIN

Min-Max Implementation

```python
def max_val(state):
    if leaf?(state), return U(state)
    initialize v = -\infty
    for each c in children(state):
        v = max(v, min_val(c))
    return v

def min_val(state):
    if leaf?(state), return U(state)
    initialize v = +\infty
    for each c in children(state):
        v = min(v, max_val(c))
    return v
```

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu
Alpha-Beta Implementation

α: MAX's best option on path to root

β: MIN's best option on path to root

def max-val(state, α, β):
 if leaf?(state), return U(state)
 initialize v = -∞
 for each c in children(state):
 v = max(v, min-val(c, α, β))
 if v ≥ β return v
 α = max(α, v)
 return v

def min-val(state, α, β):
 if leaf?(state), return U(state)
 initialize v = +∞
 for each c in children(state):
 v = min(v, max-val(c, α, β))
 return v

Slide adapted from Dan Klein & Pieter Abbeel - ai.berkeley.edu
Alpha-Beta Pruning Example

At max node:
Prune if $v \geq \beta$;
Else update $\alpha = \max(\alpha, v)$

At min node:
Prune if $v \leq \alpha$;
Else update $\beta = \min(\beta, v)$

Alpha-Beta Pruning Properties

- This pruning has no effect on final result at the root

- **Values** of intermediate nodes might be wrong!
 - but, they are correct **bounds**

- Good child ordering improves effectiveness of pruning

- With “perfect ordering”:
 - Time complexity drops to $O(b^{n/2})$
 - **Doubles** solvable depth!
 - (But complete search of complex games, e.g. chess, is still hopeless…

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 3 min/move, can explore 1M nodes/sec
 - So can check 200M nodes per move
 - \(\alpha-\beta \) reaches about depth 10 \(\rightarrow \) decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- Good example of the tradeoff between complexity of features and complexity of computation

[Demo: depth limited \((L6D4, \text{L6D5})\)
Iterative Deepening

Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of length 1 or less. (DFS gives up on any path of length 2)
2. If “1” failed, do a DFS which only searches paths of length 2 or less.
3. If “2” failed, do a DFS which only searches paths of length 3 or less.
 ….and so on.

Creates an \textit{anytime algorithm}

Heuristic Evaluation Function

- Function which scores non-terminals

- Ideal function: returns the \textit{true utility} of the position
- In practice: need a simple, fast \textit{approximation}
 - typically weighted linear sum of features:
 - e.g. $f_i(s) = \text{(num white queens} - \text{num black queens)}$, etc.

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]
Evaluation for Pacman

What features would be good for Pacman?

\[Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

Which algorithm?

\(\alpha - \beta \), depth 4, simple eval fun
Which algorithm?

\(\alpha-\beta\), depth 4, better eval fun

QuickTime™ and a GIF decompressor are needed to see this picture.

Why Pacman Starves

- He knows his score will go up by eating the dot now
- He knows his score will go up just as much by eating the dot later on
- There are no point-scoring opportunities after eating the dot
- Therefore, waiting seems just as good as eating