CSE 473: Artificial Intelligence

Constraint Satisfaction Problems

[With many slides by Dan Klein and Pieter Abbeel (UC Berkeley) available at http://ai.berkeley.edu.]

Previously

- Formulating problems as search
- Blind search algorithms
 - Depth first
 - Breadth first (uniform cost)
 - Iterative deepening
- Heuristic Search
 - Best first
 - Beam (Hill climbing)
 - A*
 - IDA*
- Heuristic generation
 - Exact soln to a relaxed problem
 - Pattern databases
- Local Search
 - Hill climbing, random moves, random restarts, simulated annealing
What is Search For?

- **Planning**: sequences of actions
 - The *path to the goal* is the important thing
 - Paths have various costs, depths
 - Assume little about problem structure

- **Identification**: assignments to variables
 - The *goal itself* is important, *not the path*
 - All paths at the same depth (for some formulations)

Constraint Satisfaction Problems

CSPs are *structured* (factored) identification problems
Constraint Satisfaction Problems

- **Standard search problems:**
 - State is a “black box”: arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything

- **Constraint satisfaction problems (CSPs):**
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Making use of CSP formulation allows for optimized algorithms
 - Typical example of trading generality for utility (in this case, speed)

Constraint Satisfaction Problems

- “Factoring” the state space

- Representing the state space in a knowledge representation

- **Constraint satisfaction problems (CSPs):**
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
CSP Example: N-Queens

- **Formulation 1:**
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints:
 \[
 \forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\} \\
 \sum_{i,j} X_{ij} = N
 \]

CSP Example: N-Queens

- **Formulation 2:**
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \ldots N\}$
 - Constraints:
 - Implicit: $\forall i, j$ non-threatening(Q_i, Q_j)
 - Explicit: $(Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\}$
CSP Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - \{1,2,...,9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region
 (or can have a bunch of pairwise inequality constraints)

Propositional Logic

\[\left((p \leftrightarrow q) \land r \right) \lor (p \land q \land \neg r)\]

- Variables: propositional variables
- Domains: \{T, F\}
- Constraints: logical formula
CSP Example: Map Coloring

- **Variables:** WA, NT, Q, NSW, V, SA, T
- **Domains:** \(D = \{ \text{red, green, blue} \} \)
- **Constraints:** adjacent regions must have different colors
 - Implicit: WA \(\neq \) NT
 - Explicit: \((\text{WA, NT}) \in \{(\text{red, green}), (\text{red, blue}), \ldots\}\)
- **Solutions are assignments satisfying all constraints, e.g.:**
 \[
 \{\text{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}\}
 \]

Constraint Graphs
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables:
 \[F, T, U, W, R, O, X_1, X_2, X_3 \]
- Domains:
 \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
- Constraints:
 \(\text{alldiff}(F, T, U, W, R, O) \)
 \(O + O = R + 10 \cdot X_1 \)
 \[\ldots \]
Chinese Constraint Network

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Gate assignment in airports
- Space Shuttle Repair
- Transportation scheduling
- Factory scheduling
- ... lots more!
Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra as 3D objects
- An early example of an AI computation posed as a CSP

Waltz on Simple Scenes

- Assume all objects:
 - Have no shadows or cracks
 - Three-faced vertices
 - “General position”: no junctions change with small movements of the eye.
- Then each line on image is one of the following:
 - Boundary line (edge of an object) (> with right hand of arrow denoting “solid” and left hand denoting “space”)
 - Interior convex edge (+)
 - Interior concave edge (-)
Legal Junctions

- Only certain junctions are physically possible
- How can we formulate a CSP to label an image?
- **Variables**: edges
- **Domains**: >, <, +, -
- **Constraints**: legal junction types

Slight Problem: Local vs Global Consistency
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by linear program methods (see CSE 521 for a bit of LP theory)
Varieties of CSP Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equivalent to reducing domains), e.g.:
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables, e.g.:
 \[SA \neq \text{WA} \]
 - Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints

- **Preferences (soft constraints):**
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Solving CSPs
CSP as Search

- States
- Operators
- Initial State
- Goal State

Standard Depth First Search
Standard Search Formulation

- Standard search formulation of CSPs
- States defined by the values assigned so far (partial assignments)
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - **Goal test:** the current assignment is complete and satisfies all constraints
- We’ll start with the straightforward, naïve approach, then improve it

Backtracking Search
Backtracking Search

- Backtracking search is the basic uninformed algorithm for solving CSPs
- Idea 1: One variable at a time
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
- Idea 2: Check constraints as you go
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to check the constraints
 - “Incremental goal test”
- Depth-first search with these two improvements is called backtracking search
- Can solve n-queens for $n \approx 25$

Backtracking Example

[Diagram showing the process of backtracking search with decision trees and failed branches marked with an 'X'.]
Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
 return RECURSIVE-BACKTRACKING({}, csp)

function RECURSIVE-BACKTRACKING($assignment$, csp) returns soln/failure
 if $assignment$ is complete then return $assignment$
 var ← SELECT-UNASSIGNED-VARIABLE($Variables[csp]$, $assignment$, csp)
 for each $value$ in ORDER-DOMAIN-VALUES(var, $assignment$, csp) do
 if $value$ is consistent with $assignment$ given $Constraints[csp]$ then
 add $\{var = value\}$ to $assignment$
 result ← RECURSIVE-BACKTRACKING($assignment$, csp)
 if result \neq failure then return result
 remove $\{var = value\}$ from $assignment$
 return failure

- What are the choice points?

[Demo: coloring -- backtracking]

Backtracking Search

- Kind of depth first search
- Is it complete?
Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Filtering
Filtering: Forward Checking

- Filtering: Keep track of domains for unassigned variables and cross off bad options
- Forward checking: Cross off values that violate a constraint when added to the existing assignment