Reinforcement Learning

Basic idea:
- Receive feedback in the form of rewards
- Agent’s utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

The “Credit Assignment” Problem
I’m in state 43, reward = 0, action = 2
- " " = 22, " " = 0, " " = 1
- " " = 0, " " = 4
- " " = 0, " " = 4
The "Credit Assignment" Problem

Yippee! I got to a state with a big reward!

But which of my actions along the way actually helped me get there??

This is the Credit Assignment problem.

Exploration-Exploitation tradeoff

- You have visited part of the state space and found a reward of 100
 - is this the best you can hope for??
- Exploitation: should I stick with what I know and find a good policy w.r.t.
 this knowledge?
 - at risk of missing out on a better reward somewhere
- Exploration: should I look for states w/ more reward?
 - at risk of wasting time & getting some negative reward
Example: Learning to Walk

[Images of a robot in different stages of learning to walk]

[Text]

Example: Learning to Walk

[Image of robot]

The Crawler!

[Image of robot]

Video of Demo Crawler Bot

[Image of robot]

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s in S
 - A set of actions a in A
 - A transition function $T(s, a, s')$
 - A reward function $R(s, a, s')$

- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - I.e., we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

[Kohl and Stone, ICRA 2004]
Offline (MDPs) vs. Online (RL)

Passive Reinforcement Learning

- **Simplified task: policy evaluation**
 - Input: a fixed policy \(\pi(s) \)
 - You don’t know the transitions \(T(s,a,s’) \)
 - You don’t know the rewards \(R(s,a,s’) \)

- **Goal:** Learn the state values

 - **In this case:**
 - Learner is “along for the ride”
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Model-Based Learning

- **Model-Based Idea:**
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct

- **Step 1:** Learn empirical MDP model
 - Count outcomes \(s’ \) for each \(s,a \)
 - Normalize to give an estimate of \(T(s,a,s’) \)
 - Discover each \(R(s,a,s’) \) when we experience \((s,a,t) \)

- **Step 2:** Solve the learned MDP
 - For example, use value iteration, as before

Example: Model-Based Learning

<table>
<thead>
<tr>
<th>Input Policy</th>
<th>Observed Episodes (Training)</th>
<th>Learned Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi)</td>
<td>Episode 1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B, east, C, -1</td>
<td>(T(s,a,s’))</td>
</tr>
<tr>
<td>B, east, C, -1</td>
<td>C, east, D, -1</td>
<td>T(B, east, C) = 1.00</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>D, exit, x, +10</td>
<td>T(C, east, D) = 0.75</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>A, exit, x, -10</td>
<td>T(D, exit, A) = 0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed Episodes (Training)</th>
<th>Learned Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Episode 2</td>
<td></td>
</tr>
<tr>
<td>B, east, C, -1</td>
<td>(T(s,a,s’))</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>T(B, east, C) = 1.00</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>T(C, east, D) = 0.75</td>
</tr>
<tr>
<td>A, exit, x, -10</td>
<td>T(D, exit, A) = 0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed Episodes (Training)</th>
<th>Learned Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Episode 3</td>
<td></td>
</tr>
<tr>
<td>E, north, C, -1</td>
<td>(T(s,a,s’))</td>
</tr>
<tr>
<td>C, east, D, -1</td>
<td>T(E, north, C) = 1.00</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>T(C, east, D) = 0.75</td>
</tr>
<tr>
<td>A, exit, x, -10</td>
<td>T(D, exit, A) = 0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observed Episodes (Training)</th>
<th>Learned Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Episode 4</td>
<td></td>
</tr>
<tr>
<td>E, north, C, -1</td>
<td>(T(s,a,s’))</td>
</tr>
<tr>
<td>C, east, A, -1</td>
<td>T(E, north, C) = 1.00</td>
</tr>
<tr>
<td>D, exit, x, +10</td>
<td>T(C, east, A) = 0.75</td>
</tr>
<tr>
<td>A, exit, x, -10</td>
<td>T(D, exit, A) = 0.25</td>
</tr>
</tbody>
</table>
Example: Expected Age

Goal: Compute expected age of cs473 students

\[E(A) = \sum P(A) e^a \]

Known \(P(A) \):

\[E(A) = \frac{0.25 \times 20 + \ldots}{N} \]

Without \(P(A) \), instead collect samples \(\{a_1, a_2, \ldots, a_N\} \)

Why does this work? Because eventually you learn the right model.

Unknown \(P(A) \): “Model Based”

\[E(A) = \frac{1}{N} \sum a_i \]

Why does this work? Because samples appear with the right frequencies.

Unknown \(P(A) \): “Model Free”

Direct Evaluation

- Goal: Compute values for each state under \(\pi \)
- Idea: Average together observed sample values
 - Act according to \(\pi \)
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Why problems with Direct Evaluation?

- What’s good about direct evaluation?
 - It’s easy to understand
 - It doesn’t require any knowledge of \(T, R \)
 - It eventually computes the correct average values, using just sample transitions
- What’s bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Example: Direct Evaluation

Input Policy \(\pi \)

Observed Episodes (Training)

Output Values

Problem with Direct Evaluation

- Simplified Bellman updates calculate \(V \) for a fixed policy:
 - Each round, replace \(V \) with a one-step-look-ahead layer over \(V \)
 \[V_{t+1}(s) = 0 \]
 \[V_{t+1}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_t(s')] \]
- Key question: how can we do this update to \(V \) without knowing \(T \) and \(R \)?
- In other words, how do we take a weighted average without knowing the weights?

Example: Expected Age

Model-Free Learning

Goal: Compute expected age of cs473 students

\[E(A) = \sum P(A) e^a \]

Without \(P(A) \), instead collect samples \(\{a_1, a_2, \ldots, a_N\} \)

Why does this work? Because eventually you learn the right model.

Unknown \(P(A) \): “Model Based”

\[E(A) = \frac{1}{N} \sum a_i \]

Why does this work? Because samples appear with the right frequencies.

Unknown \(P(A) \): “Model Free”

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate \(V \) for a fixed policy:
 - Each round, replace \(V \) with a one-step-look-ahead layer over \(V \)
 \[V_{t+1}(s) = 0 \]
 \[V_{t+1}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_t(s')] \]
- This approach fully exploited the connections between the states
- Unfortunately, we need \(T \) and \(R \) to do it!
Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages:
 $$v_{T+1}^\pi(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma v_{T+1}^\pi(s')]$$

- Idea: Take samples of outcomes s' [by doing the action!] and average

 \[
 \begin{align*}
 \text{sample}_1 &= R(s, \pi(s), s') + \gamma v_{T+1}^\pi(s') \\
 \text{sample}_2 &= R(s, \pi(s), s') + \gamma v_{T+1}^\pi(s') \\
 \text{sample}_3 &= R(s, \pi(s), s') + \gamma v_{T+1}^\pi(s') \\
 v_{T+1}^\pi(s) &= \frac{1}{n} \sum \text{sample}_i
 \end{align*}
 \]

Temporal Difference Learning

- Big idea: learn from every experience:
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!

- Move values toward value of whatever successor occurs running average

$$\text{Sample of } V(s): \quad \text{sample} = R(s, \pi(s), s') + \gamma V(s')$$

$$\text{Update to } V(s): \quad v_{T+1}^\pi(s) \leftarrow (1 - \alpha) v_{T}^\pi(s) + \alpha \text{sample}$$

$$\text{Same update: } \quad v_{T+1}^\pi(s) \leftarrow v_{T}^\pi(s) + \alpha [\text{sample} - v_{T}^\pi(s)]$$

Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $\tilde{x}_n = (1 - \alpha) \tilde{x}_{n-1} + \alpha \cdot x_n$
 - Makes recent samples more important:
 $$\tilde{x}_n = x_n \underbrace{(1 - \alpha) x_{n-1} + (1 - \alpha)^2 x_{n-3} + \ldots}_{\text{forgets about the past (distant past values were wrong anyway)}}$$
 - Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

<table>
<thead>
<tr>
<th>States</th>
<th>Observed Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>b, east, C, 2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0, -1</td>
</tr>
<tr>
<td>D</td>
<td>a, -1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
</tr>
</tbody>
</table>

Assume $\gamma = 0.9$ or $\lambda = 0.5$

$$v_{T}^\pi(s) \leftarrow (1 - \alpha) v_{T}^\pi(s) + \alpha [R(s, \pi(s), s') + \gamma v_{T}^\pi(s')]$$

Problems with TD Value Learning

- TD value learning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we’re sunk:
 $$\pi(s) = \arg \max_a Q(s, a)$$
 $$Q(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma v_{T+1}^\pi(s')]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Active Reinforcement Learning
Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 $$V_{k+1}(s) = \max_{a} \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V_k(s') \right]$$
 - But Q-values are more useful, so compute them instead
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth $k+1$ Q-values for all states:
 $$Q_{k+1}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s', a') \right]$$

Q-Learning

- Q-Learning: sample-based Q-value iteration
 $$Q_{k+1}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s', a') \right]$$
 - Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:
 $$sample = R(s,a,s') + \gamma \max_{a'} Q_k(s', a')$$
 - Incorporate the new estimate into a running average:
 $$Q(s,a) = (1-\alpha)Q(s,a) + \alpha [sample]$$

Q-Learning

- For all s,a
 - Initialize $Q(s,a) = 0$
- Repeat Forever
 - Where are you? s
 - Choose some action a
 - Execute it in real world: (s,a,r,s')
 - Do update:
 $$Q(s,a) = (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler
Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning

Caveats:
- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)

Two main reinforcement learning approaches

- Model-based approaches:
 - explore environment & learn model, \(T(p(s|a)) \) and \(R(s,a) \), (almost) everywhere
 - use model to plan policy, MDP-style
 - approach leads to strongest theoretical results
 - often works well when state-space is manageable
- Model-free approach:
 - don’t learn a model, learn value function or policy directly
 - weaker theoretical results
 - often works better when state space is large

The Story So Far: MDPs and RL

<table>
<thead>
<tr>
<th>Known MDP: Offline Solution</th>
<th>Unknown MDP: Model-Based</th>
<th>Unknown MDP: Model-Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal</td>
<td>Technique</td>
<td>Goal</td>
</tr>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Value / policy iteration</td>
<td>Compute (V^, Q^)</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Policy evaluation</td>
<td>Evaluate a fixed policy (\pi)</td>
</tr>
</tbody>
</table>

Video of Demo Q-Learning Auto Cliff Grid