Solving MDPs

- Value Iteration
- Policy Iteration
- Reinforcement Learning

Optimal Quantities

- The value (utility) of a state s: $V^*(s)$ = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a): $Q^*(s,a)$ = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s)$ = optimal action from state s

Values of States

- Fundamental operation: compute the (expectmax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

 Recursive definition of value:

 \[
 V^*(s) = \max_a \sum_{s'} T(s,a,s') [r(s,a,s') + \gamma V^*(s')] \\
 Q^*(s,a) = \sum_{s'} T(s,a,s') [r(s,a,s') + \gamma V^*(s')] \\
 \]

Racing Search Tree
We're doing way too much work with expectimax!

Problem: States are repeated

- Idea: Only compute needed quantities once

Problem: Tree goes on forever

- Idea: Do a depth-limited computation, but with increasing depths until change is small
- Notes: Deep parts of the tree eventually don't matter if $\gamma < 1$

Key idea: time-limited values

- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
- Equivalently, it's what a depth-k expectimax would give from s

- Time-Limited Values
- Computing Time-Limited Values

Value Iteration

The Bellman Equations

How to be optimal:

Step 1: Take correct first action
Step 2: Keep being optimal

The Bellman Equations

- Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- These are the Bellman equations, and they characterize optimal values in a way we'll use over and over
Value Iteration

- Bellman equations characterize the optimal values:
 \[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]
- Value iteration computes them:
 \[V_{k+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
- Value iteration is just a fixed point solution method
 - though the \(V_k \) vectors are also interpretable as time-limited values

Value Iteration Algorithm

- Start with \(V_0(s) = 0 \):
- Given vector of \(V_k(s) \) values, do one ply of expectimax from each state:
 \[V_{k+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]
- Repeat until convergence
- Complexity of each iteration: \(O(S^2 A) \)
- Number of iterations: \(\text{poly}(|S|, |A|, 1/(1-\gamma)) \)
- Theorem: will converge to unique optimal values

k=0

VALUES AFTER 0 ITERATIONS

k=1

VALUES AFTER 1 ITERATIONS

k=2

VALUES AFTER 2 ITERATIONS

k=3

VALUES AFTER 3 ITERATIONS
$k=4$

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

$K=5$

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=6$

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=7$

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=8$

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

$k=9$

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Convergence*

- How do we know the V_k vectors will converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Search: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees
 - The max difference happens if big reward at $k+1$ level
 - That last layer is at best all R_{MAX}
 - But everything is discounted by γ_k that far out
 - So V_k and V_{k+1} are at most γ^k (if $|R|$ different
 - So as k increases, the values converge

Computing Actions from Values

- Let’s imagine we have the optimal values $V^*(s)$
- How should we act?
 - It’s not obvious!
- We need to do a mini-expectimax (one step)
 \[\pi^*(s) = \arg \max_a \sum_{a'} T(s, a, a') [R(s, a, a') + \gamma V^*(s')] \]
- This is called policy extraction, since it gets the policy implied by the values
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:
 \[\pi^*(s) = \arg \max_n Q^*(s, a) \]
- How should we act?
 - Completely trivial to decide!
- Important lesson: actions are easier to select from q-values than values!

Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[v_{k+1}(s) = \max_a \sum_r T(r(s, a), s') [r(s, a, s') + \gamma v_k(s')] \]
- Problem 1: It’s slow – O(S^2 A) per iteration
- Problem 2: The “max” at each state rarely changes
- Problem 3: The policy often converges long before the values

VI → Asynchronous VI

- Is it essential to back up all states in each iteration?
 - No!
- States may be backed up
 - many times or not at all
 - in any order
- As long as no state gets starved...
 - convergence properties still hold!!
Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors same?
- Prefer backing a state
 - whose successors had most change

- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing a state update priority queue
 - for all predecessors