Example: Grid World

- A maze-like problem
 - The agent lives on a grid
 - Walls block the agent's path
- Non-deterministic movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

- Deterministic Grid World
- Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - A set of states $s \in S$
 - A set of actions $a \in A$
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$
 - $R(s, a, s') = -0.01$ if $s' = s_{42}$
 - $R(s, a, s') = -1.01$ if $s' = s_{42}$
 - Also called the model or the dynamics

T is a Big Table!
11 X 4 x 11 = 484 entries

For now, we give this as input to the agent

For now, we also give this to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states \(s \) in \(S \)
 - A set of actions \(a \) in \(A \)
 - A transition function \(T(s, a, s') \)
 - Probability that a transition leads to \(s' \), i.e., \(P(s' | s, a) \)
 - A reward function \(R(s, a, s') \)

\[
\begin{align*}
R(s_{32}) &= -0.01 \\
R(s_{42}) &= -1.01 \\
R(s_{43}) &= 0.99
\end{align*}
\]

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent.
- For Markov decision processes, "Markov" means action outcomes depend only on the current state:

\[
P(S_{t+1} = s' | S_t = s, A_t = a_t, S_{t-1}, A_{t-1}, \ldots, S_0 = s_0) = P(S_{t+1} = s' | S_t = s, A_t = a_t)
\]

- This is just like search, where the successor function could only depend on the current state (not the history).

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.
- For MDPs, we want an optimal policy \(\pi^*: S \rightarrow A \)
 - A policy \(\pi \) gives an action for each state.
 - An optimal policy is one that maximizes expected utility if followed.
 - An explicit policy defines a reflex agent.
 - Expectimax didn’t compute entire policies.
 - It computed the action for a single state only.

Optimal Policies

Example: Racing
Example: Racing
- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Racing Search Tree

MDP Search Trees
- Each MDP state projects an expectmax-like search tree

Utilities of Sequences
- What preferences should an agent have over reward sequences?
 - More or less? [1, 2, 2] or [2, 3, 4]
 - Now or later? [0, 0, 1] or [1, 0, 0]

Discounting
- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially
Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once

- Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- Example: discount of 0.5
 - \(U([1,2,3]) = 1 \times 1 + 0.5 \times 2 + 0.25 \times 3 \)
 - \(U([1,2,3]) < U([3,2,1]) \)

Stationary Preferences

- Theorem: if we assume stationary preferences:
 - \([a_1, a_2, \ldots] > [b_1, b_2, \ldots] \)
 - \(\gamma [a_1, a_2, \ldots] > \gamma [b_1, b_2, \ldots] \)

- Then: there are only two ways to define utilities
 - Additive utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots \)
 - Discounted utility: \(U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots \)

Quiz: Discounting

- Given: \[\begin{array}{cccc}
 a & b & c & d \\
 10 & 1 & 1 & 1 \\
\end{array} \]
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- Quiz 1: For \(\gamma = 1 \), what is the optimal policy?
 - 10 1

- Quiz 2: For \(\gamma = 0.1 \), what is the optimal policy?
 - 10 1

- Quiz 3: For which \(\gamma \) are West and East equally good when in state d?

Infinite Utilities?!}

- Problem: What if the game lasts forever? Do we get infinite rewards?

- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g., life)
 - Give nonstationary policies (\(\gamma \) depends on time left)
 - Discounting: use \(0 < \gamma < 1 \)
 - \(U([r_0, r_1, r_2, \ldots]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\text{max}}/(1 - \gamma) \)
 - Smaller \(\gamma \) means smaller "horizon" – shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- Markov decision processes:
 - Set of states \(S \)
 - Start state \(s_0 \)
 - Set of actions \(A \)
 - Transitions \(P(s'|s,a) \) (or \(T(s,a,s') \))
 - Rewards \(R(s,a,s') \) (and discount \(\gamma \))

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards