Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has \(c \) variables out of \(n \) total
- Worst-case solution cost is \(O((n/c)(d^c)) \), linear in \(n \)
 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{40} = 4 \) billion years at 10 million nodes/sec
 - \((4)(2^{20}) = 0.4 \) seconds at 10 million nodes/sec

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering
 - For \(i = n : 2 \), apply RemoveInconsistent(Parent(\(X_i \)), \(X_i \))
 - For \(i = 1 : n \), assign \(X_i \), consistently with Parent(\(X_i \))
- Runtime: \(O(n d^2) \)

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parent precede children
- Remove backward:
 - For \(i = n : 2 \), apply RemoveInconsistent(Parent(\(X_i \)), \(X_i \))
- Assign forward:
 - For \(i = 1 : n \), assign \(X_i \), consistently with Parent(\(X_i \))
- Runtime: \(O(n d^2) \) (why?)

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size \(c \) gives runtime \(O((d^c)(n-c) d^2) \), very fast for small \(c \)

Cutset Conditioning

- Choose a cutset
- Instantiate the cutset (all possible ways)
- Compute residual CSP for each assignment
- Solve the residual CSPs (tree structured)

Iterative Algorithms for CSPs

- Greedy and local methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \) total number of violated constraints
Example: 4-Queens

States: 4 queens in 4 columns (\(4^4 = 256\) states)
Operators: move queen in column
Goal test: no attacks
Evaluation: \(h(n) = \text{number of attacks}\)

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., \(n = 10,000,000\))
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio \(R = \frac{\text{number of constraints}}{\text{number of variables}}\)

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can’t make it better (no fringe!)
- New successor function: local changes
- Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit
- What’s bad about this approach?
 - Complete?
 - Optimal?
- What’s good about it?
Hill Climbing Diagram

Hill Climbing

Simulated Annealing
- Idea: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

Simulated Annealing
- Theoretical guarantee:
 - Stationary distribution:
 - If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
 - Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Genetic Algorithms
- Genetic algorithms use a natural selection metaphor
 - Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens
- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?
GA’s for Locomotion

Ever wonder what it would be like to see evolution happening right before your eyes?