CSE 473: Artificial Intelligence

Constraint Satisfaction

Dieter Fox

Based on slides adapted Luke Zettlemoyer, Dan Klein, Stuart Russell or Andrew Moore

What is Search For?

- Models of the world: single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a “black box”: arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - Simple example of a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- Formulation 1:
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints
 - $\forall i,j,k$ $(X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$
 - $\forall i,j,k$ $(X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 - $\forall i,j,k$ $(X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 - $\sum_{i,j} X_{ij} = N$
 - Note: need to make sure that constraints refer to different squares

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors
 - $WA \neq NT$
 - $(WA, NT) \in \{(\text{red,green}), (\text{red,blue}), (\text{green,red}), \ldots\}$
- Solutions are assignments satisfying all constraints, e.g.:
 - $\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}$
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables (circles): $F, T, U, W, R, O, X_1, X_2, X_3$
- Domains: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Constraints (boxes):
 - $\text{alldiff}(F, T, U, W, R, O)$
 - $O + O = R + 10 \cdot X_1$
 - ...

Example: Sudoku

- Variables: Each (open) square
- Domains: (1,2,...,9)
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable
 - Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 - $SA \neq \text{green}$
 - Binary constraints involve pairs of variables:
 - $SA \neq WA$
 - Higher-order constraints involve 3 or more variables:
 - e.g., cryptarithmetic column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!
- Many real-world problems involve real-valued variables…
Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let's start with a straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}%
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Search Methods

- What does BFS do?
- What does DFS do?

DFS, and BFS would be much worse!

Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - i.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - i.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - "Incremental goal test"
- Depth-first search for CSPs with these two improvements is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n ≈ 25

Backtracking Example

- What are the choice points?

Code:

```plaintext
function BACKTRACKING-SEARCH(assigned)
    return TRUE/FAILURE;

function RECURSIVE-BACKTRACKING(assigned)
    if assigned is complete then return assigned
    var ← SELECT-UNASSIGNED-VARIABLE(assigned)
    for each value in ORDER-DOMAINS(var, assigned) do
        if value is consistent with assigned then Constraints[→ var] then
            add (var = value) to assignment
            result ← RECURSIVE-BACKTRACKING(assigned)
            if result = failure then return result
            remove (var = value) from assignment
    return failure
```
Backtracking

Are we done?

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values
Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn’t detect more distant failures:

 - WA
 - NT
 - Q
 - NSW
 - V
 - SA
 - T

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation repeatedly enforces constraints (locally)

Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - \(X \rightarrow Y \) is consistent iff for every value of \(X \) there is some allowed value of \(Y \)

 - WA
 - NT
 - Q
 - NSW
 - V
 - SA
 - T

- If \(X \) loses a value, all pairs \(Z \rightarrow X \) need to be rechecked
Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - \(X \rightarrow Y \) is consistent if for every value of \(X \) there is some allowed value of \(Y \)
 - When checking \(X \rightarrow Y \), throw out any values of \(X \) for which there isn’t an allowed value of \(Y \)

Arc Consistency

```plaintext
function ARC-CHECK(csp) returns the CSP, possibly with reduced domain inputs: csp, a binary CSP with variables \( X_1, X_2, \ldots, X_n \)
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
  \( (X_i, X_j) \) = REMOVE-FRONT(queue)
  if REMOVE-INCONSISTENCY-VALUE(X_i, X_j) then
    for each \( X_i \) in NEIGHBORS[X_j] do
      add \( (X_i, X_j) \) to queue
  end if
end while
```

- Runtime: \(O(n^3d^3) \), can be reduced to \(O(n^2d^2) \)
- ... but detecting all possible future problems is NP-hard – why?

Are We Done?

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

What went wrong here?
K-Consistency*

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.
- Higher k more expensive to compute
- (You need to know the k=2 algorithm)

Ordering: Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values
- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering

Ordering: Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables
- Why most rather than fewest constraints?

Ordering: Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is \(O(\text{n}!/(\text{c}!\text{d}!)) \), linear in n
 - E.g., n = 80, d = 2, c =20
 - \(2^{40} \approx 4 \text{ billion years at 10 million nodes/sec} \)
 - \((4)(2^{20}) \approx 0.4 \text{ seconds at 10 million nodes/sec} \)
Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
- For \(i = n : 2 \), apply RemoveInconsistent(Parent(X\(_i\)), X\(_i\))
- For \(i = 1 : n \), assign X\(_i\) consistently with Parent(X\(_i\))
- Runtime: \(O(n d^2) \)

Theorem: if the constraint graph has no loops, the CSP can be solved in \(O(n d^2) \) time!

Compare to general CSPs, where worst-case time is \(O(d^n) \)

This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size \(c \) gives runtime \(O((d^c)(n-c)d^2) \), very fast for small \(c \)

Iterative Algorithms for CSPs

- Greedy and local methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \) total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (\(4^4 = 256 \) states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve \(n \)-queens in almost constant time for arbitrary \(n \) with high probability (e.g., \(n = 10,000,000 \))
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio
- \(R = \) number of constraints / number of variables
Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice