Adversarial Search

Game Playing State-of-the-Art

- **Checkers**: Chinook ended 40-year reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions. Checkers is now solved!
- **Chess**: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue examined 200 million positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply. Current programs are even better, if less historic.
- **Othello**: Human champions refuse to compete against computers, which are too good.
- **Go**: Human champions are beginning to be challenged by machines, though the best humans still beat the best machines. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves, along with aggressive pruning.
- **Pacman**: unknown

Adversarial Search

Game Playing

- Many different kinds of games!
- **Choices**:
 - Deterministic or stochastic?
 - One, two, or more players?
 - Perfect information (can you see the state)?
- Want algorithms for calculating a strategy (policy) which recommends a move in each state

Deterministic Games

- Many possible formalizations, one is:
 - **States**: S (start at s₀)
 - **Players**: P={1,...,N} (usually take turns)
 - **Actions**: A (may depend on player / state)
 - **Transition Function**: S x A → S
 - **Terminal Test**: S → {t,f}
 - **Terminal Utilities**: S x P → R
- Solution for a player is a policy: S → A

Zero-Sum Games

- **Zero-Sum Games**
 - Agents have opposite utilities (values on outcomes)
 - Lets us think of a single value that one maximizes and the other minimizes
 - Adversarial, pure competition
- **General Games**
 - Agents have independent utilities (values on outcomes)
 - Cooperation, indifference, competition, & more are possible
Single-Agent Trees

Value of a State

Adversarial Game Trees

Minimax Values

Tic-tac-toe Game Tree

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - One player maximizes result
 - The other minimizes result

- Minimax search:
 - A state-space search tree
 - Players alternate turns
 - Compute each node’s minimax value: the best achievable utility against a rational (optimal) adversary

Slide from Dan Klein & Pieter Abbeel - ai.berkeley.edu
Minimax Implementation

```python
def min_value(state):
    initialize v = +\infty
    for each successor of state:
        v = min(v, max_value(successor))
    return v

V(s) = \max_{s' \in \text{successors}(s)} V(s')
```

```python
def max_value(state):
    initialize v = -\infty
    for each successor of state:
        v = max(v, min_value(successor))
    return v

V(s') = \min_{s' \in \text{successors}(s')} V(s)
```

Minimax Implementation (Dispatch)

```python
def value(state):
    if the state is a terminal state: return the state’s utility
    if the next agent is MAX: return max_value(state)
    if the next agent is MIN: return min_value(state)
```

Concrete Minimax Example

```
max

min

A_1 A_2 A_3
3 12 8

A_4 A_5 A_6
2 4 6

A_7
14 5 2
```

Minimax Properties

- Optimal?
 - Yes, against perfect player. Otherwise?
- Time complexity
 - O(b^m)
- Space complexity?
 - O(bm)
- For chess, b \approx 35, m \approx 100
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Pruning Example

```
\alpha-\beta Pruning
```

- General configuration
 - \alpha is the best value that MAX can get at any choice point along the current path
 - If n becomes worse than \alpha, MAX will avoid it, so can stop considering n’s other children
 - Define \beta similarly for MIN
Alpha-Beta Pruning

Do we need to check this node?

No - this branch is guaranteed to be worse than what max already has
Alpha-Beta Pruning Properties

- This pruning has **no effect** on final result at the root
- Values of intermediate nodes might be wrong!
 - but, they are bounds
- Good child ordering improves effectiveness of pruning
- With “perfect ordering”:
 - Time complexity drops to $O(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...

Alpha-Beta Implementation

\[\alpha: \text{MAX’s best option on path to root} \]
\[\beta: \text{MIN’s best option on path to root} \]

def max-value(state, α, β):
 initialize v = -∞
 for each successor of state:
 v = max(v, value(successor, α, β))
 if v ≥ β return v
 α = max(α, v)
 return v

def min-value(state, α, β):
 initialize v = +∞
 for each successor of state:
 v = min(v, value(successor, α, β))
 if v ≤ α return v
 β = min(β, v)
 return v
Resource Limits

- Cannot search to leaves
- Depth-limited search
 - Instead, search a limited depth of tree
 - Replace terminal utilities with an eval function for non-terminal positions
- Guarantee of optimal play is gone
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - \(\alpha-\beta \) reaches about depth 8 (a decent chess program)

Evaluation Functions

- Function which scores non-terminals

\[\text{Eval}(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

- Ideal function: returns the utility of the position
- In practice: typically weighted linear sum of features:
 - e.g. \(f_i(s) = \text{num white queens} - \text{num black queens} \), etc.

Which algorithm?

- \(\alpha-\beta \), depth 6, simple eval. fun.

Which algorithm?

- \(\alpha-\beta \), depth 4, better eval. fun.