What is Search For?
- Models of the world: single agent, deterministic actions, fully observed state, discrete state space
- Planning: sequences of actions
 - The path to the goal is important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups
- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems
- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - Simple example of a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens
- Formulation 1:
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints:
 - $\forall i, j, k (X_{ij} - X_{ik}) \in \{(0,0), (0,1), (1,0)\}$
 - $\forall i, j, k (X_{ij} - X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 - $\forall i, j, k (X_{ij} - X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 - $\forall i, j, k (X_{ij} - X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$
 - $\sum_i X_{ij} = N$
 - Notes: need to make sure that constraints refer to different squares

Example: N-Queens
- Formulation 2:
 - Variables: Q_k
 - Domains: $\{1, 2, 3, \ldots N\}$
 - Constraints:
 - Implicit: $\forall i, j$ non-threatening(Q_i, Q_j)
 - Explicit: $(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\}$

Example: Map-Coloring
- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors
 - $WA \neq NT$
 - $\{WA, NT\} \in \{(\text{red,green}), (\text{red,blue}), (\text{green,red})\}$
- Solutions are assignments satisfying all constraints, e.g.:
 - $\{WA = \text{red}, NT = \text{green}, Q = \text{red}, NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\}$
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables (circles):
 - F, T, U, W, R, O, X_1, X_2, X_3
- Domains:
 - $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Constraints (boxes):
 - $\text{alldiff}(F, T, U, W, R, O)$
 - $O + O = R + 10 \cdot X_1$
 - "\ldots"

Example: Sudoku

- Variables: Each (open) square
- Domains: $\{1, 2, \ldots, 9\}$
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size $|\Omega|$ means $O(|\Omega|^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 - $SA \neq \text{green}$
 - Binary constraints involve pairs of variables:
 - $SA \neq WA$
 - Higher-order constraints involve 3 or more variables:
 - e.g., cryptarithmetic column constraints

- Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- \ldots lots more!

- Many real-world problems involve real-valued variables…
Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let’s start with a straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}.
 - Successor function: assign a value to an unassigned variable.
 - Goal test: the current assignment is complete and satisfies all constraints.

Search Methods

- What does BFS do?
- What does DFS do?

Backtracking Search

- Idea 1: Only consider a single variable at each point.
 - Variable assignments are commutative, so fix ordering.
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red].
 - Only need to consider assignments to a single variable at each step.
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point.
 - I.e. consider only values which do not conflict previous assignments.
 - Might have to do some computation to figure out whether a value is ok.
 - “Incremental goal test.”
- Depth-first search for CSPs with these two improvements is called backtracking search.
- Backtracking search is the basic uninformed algorithm for CSPs.
- Can solve n-queens for \(n \approx 25 \).

Backtracking Search

- What are the choice points?

Improving Backtracking

- General-purpose ideas give huge gains in speed.
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Filtering: Can we detect inevitable failure early?
- Structure: Can we exploit the problem structure?
Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn’t detect more distant failures:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation repeatedly enforces constraints (locally)

Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - $X \rightarrow Y$ is consistent if for every value of X there is some allowed value of Y
 - When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y

- If X loses a value, all pairs $Z \rightarrow X$ need to be rechecked

Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - $X \rightarrow Y$ is consistent if for every value of X there is some allowed value of Y
 - When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y

- If X loses a value, all pairs $Z \rightarrow X$ need to be rechecked
Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
 - When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y
 - If X loses a value, all pairs $Z \rightarrow X$ need to be rechecked

Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
 - When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y

Arc consistency detects failure earlier than forward checking
Can be run before or after each assignment

Arc Consistency

- Simplest form of propagation makes each pair of variables consistent:
 - $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
 - When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y

Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
... but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency*

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to $k-1$ can be extended to the kth node.

Higher k more expensive to compute
(You need to know the $k=2$ algorithm)
Ordering: Minimum Remaining Values
- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering

Ordering: Degree Heuristic
- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

- Why most rather than fewest constraints?

Ordering: Least Constraining Value
- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Problem Structure
- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has 20 variables out of 80 total
- Worst-case solution cost is $O((n/c)(d^2))$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{20} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs
- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering

Tree-Structured CSPs
- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children
 - Remove backward:
 - For $i = n \ldots 2$, apply RemovalInconsistent($\text{Parent}(X_i), X_i$)
 - Assign forward:
 - For $i = 1 \ldots n$, assign X_i consistently with $\text{Parent}(X_i)$

- Runtime: $O(n d^2)$ (why?)
Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c)(n-c)d^2)$, very fast for small c

Cutset Conditioning

1. Choose a cutset
2. Instantiate the cutset (all possible ways)
3. Compute residual CSP for each assignment
4. Solve the residual CSPs (tree structured)

Iterative Algorithms for CSPs

- Greedy and local methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with $h(n) = \text{total number of violated constraints}$

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $h(n) = \text{number of attacks}$

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
 - Backtracking = depth-first search with one legal variable assigned per node
 - Variable ordering and value selection heuristics help significantly
 - Forward checking prevents assignments that guarantee later failure
 - Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
 - The constraint graph representation allows analysis of problem structure
 - Tree-structured CSPs can be solved in linear time
 - Iterative min-conflicts is usually effective in practice
Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can’t make it better (no fringe!)
- New successor function: local changes
- Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit
- What’s bad about this approach?
 - Complete?
 - Optimal?
- What’s good about it?

Hill Climbing Diagram

Hill Climbing

- Idea: Escape local maxima by allowing downhill moves
- But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to “temperature”
local variables: current, a node
next, a node
T, a “temperature” controlling prob. of downward steps

current ← MAKENODE(INITIAL-STATE(problem))
for t ← 1 to infinity do
    T ← schedule(t)
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE(next) - VALUE(current)
    if ΔE ≥ 0 then current ← next
    else current ← next only with probability exp(ΔE / T)
```
Simulated Annealing

- Theoretical guarantee:
 \[p(x) \propto e^{\frac{E(x)}{T}} \]
- Stationary distribution:
- If T decreased slowly enough, will converge to optimal state!
- Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about ridge operators which let you jump around the space in better ways

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
- Keep best N hypotheses at each step (selection) based on a fitness function
- Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

- Why does crossover make sense here?
- When wouldn’t it make sense?
- What would mutation be?
- What would a good fitness function be?

GA’s for Locomotion

Ever wonder what it would be like to see evolution happening right before your eyes?

Hod Lipson’s Creative Machines Lab @ Cornell